[AtCoder Regular Contest 096 E] Everything on It 解题报告 (第二类斯特林数+容斥原理)
题目链接:https://arc096.contest.atcoder.jp/tasks/arc096_c
Time limit : 4sec / Memory limit : 512MB
Score : 900 points
Problem Statement
In "Takahashi-ya", a ramen restaurant, basically they have one menu: "ramen", but N kinds of toppings are also offered. When a customer orders a bowl of ramen, for each kind of topping, he/she can choose whether to put it on top of his/her ramen or not. There is no limit on the number of toppings, and it is allowed to have all kinds of toppings or no topping at all. That is, considering the combination of the toppings, 2N types of ramen can be ordered.
Akaki entered Takahashi-ya. She is thinking of ordering some bowls of ramen that satisfy both of the following two conditions:
- Do not order multiple bowls of ramen with the exactly same set of toppings.
- Each of the N kinds of toppings is on two or more bowls of ramen ordered.
You are given N and a prime number M. Find the number of the sets of bowls of ramen that satisfy these conditions, disregarding order, modulo M. Since she is in extreme hunger, ordering any number of bowls of ramen is fine.
Constraints
- 2≤N≤3000
- 10^8≤M≤10^9+9
- N is an integer.
- M is a prime number.
Subscores
- 600 points will be awarded for passing the test set satisfying N≤50.
Input
Input is given from Standard Input in the following format:
N M
Output
Print the number of the sets of bowls of ramen that satisfy the conditions, disregarding order, modulo M.
Sample Input 1
2 1000000007
Sample Output 1
2
Let the two kinds of toppings be A and B. Four types of ramen can be ordered: "no toppings", "with A", "with B" and "with A, B". There are two sets of ramen that satisfy the conditions:
- The following three ramen: "with A", "with B", "with A, B".
- Four ramen, one for each type.
Sample Input 2
3 1000000009
Sample Output 2
118
Let the three kinds of toppings be A, B and C. In addition to the four types of ramen above, four more types of ramen can be ordered, where C is added to the above four. There are 118 sets of ramen that satisfy the conditions, and here are some of them:
- The following three ramen: "with A, B", "with A, C", "with B, C".
- The following five ramen: "no toppings", "with A", "with A, B", "with B, C", "with A, B, C".
- Eight ramen, one for each type.
Note that the set of the following three does not satisfy the condition: "'with A', 'with B', 'with A, B'", because C is not on any of them.
Sample Input 3
50 111111113
Sample Output 3
1456748
Remember to print the number of the sets modulo M. Note that these three sample inputs above are included in the test set for the partial score.
Sample Input 4
3000 123456791
Sample Output 4
16369789
题目大意:有 N 种调味剂, 现在要做一些拉面, 每碗拉面中可以放入任意种 类的调味剂, 但必须满足没有两碗拉面使用的调味剂集合相同, 且每种调味剂至少出现在两碗拉面中.
求方案数模一个质数.N ≤ 3000.
我们发现拉面是随便多少碗的,考虑容斥。定义调味剂不合法为调味剂只出现了1次或没有出现,ans=(0个调味剂不合法,其他任意) - (1个调味剂不合法,其他任意) + (2个调味剂不合法,其他任意)…………
写出来就是,注意不合法的调味剂我们还要乘上组合数
f(i)是指有i个调味剂不合法,其他调味剂任意的方案数.
考虑怎么计算f[i],f[i]=Σ(g[i][j]*2(n−i)j)*2(2^(n-i))
g[i][j]为在j碗面中有i种是不合法调味剂的方案数,然后剩下的n-i种调味剂可以随便放在这j碗面里,也可以放在j碗面之外(j<=i)
考虑放在j碗面里总共有 2(n-i) 种放的状态,一共j碗面,方案数就是2(n−i)j
考虑放在j碗面之外,同样有2(n-i)种放的状态,每一种状态都有可能出现或者没有,方案数就是2(2^(n-i))和上面那个之所以形式上不一样是因为这个不限制个数
预处理出组合数和g数组,g数组的递推式:g[i][j]=g[i-1][j-1]+g[i-1][j]*(j+1)(第二类斯特林数)。这样递推的原因是,当有i-1种坏酱在j-1碗面中时,第i种酱就必定在第j碗面中;或者i-1种酱在j碗面中,那第i种酱可以在任意j碗面中,或者压根就没加入任意j碗面中,所以是乘于j+1
值得注意的是,我们在计算2(2^(n-i)) 的时候,作为指数的(2^(n-i))取模并不是模上mod,而是模上mod-1,也就是mod的欧拉函数值(欧拉定理)
代码如下:
#include<iostream>
#include<cstdio>
#include<algorithm>
#define ll long long
using namespace std; const int maxn=3e3+;
ll n,mod;
ll g[maxn][maxn],c[maxn][maxn];
ll mul(ll a,ll b,ll p)
{
ll r=;
for (;b;b>>=,a=(a+a)%p) if (b&) r=(r+a)%p;
return r;
}
ll qpow(ll a,ll b,ll p)
{
ll r=;
for (;b;b>>=,a=mul(a,a,p)) if (b&) r=mul(r,a,p);
return r;
}
int main()
{
scanf("%lld%lld",&n,&mod);
for (int i=;i<=n;i++)
{
c[i][]=c[i][i]=;
for (int j=;j<i;j++)
c[i][j]=(c[i-][j]+c[i-][j-])%mod;
}
for (int i=;i<=n;i++)
{
g[i][]=;
for (int j=;j<=i;j++)
g[i][j]=(g[i-][j-]+g[i-][j]*(j+)%mod)%mod;
}
ll ans=;
for (int i=;i<=n;i++)
{
ll k=c[n][i];
if (i&) k=(mod-k)%mod;
ll x=qpow(,n-i,mod-);//欧拉定理,注意模数
x=qpow(,x,mod);
ll kind=qpow(,n-i,mod);
ll cnt=,y=;
for (int j=;j<=i;j++)
{
cnt=(cnt+(g[i][j]*y%mod))%mod;
y=kind*y%mod;
}
ans=(ans+(k*cnt%mod*x%mod))%mod;
}
printf("%lld\n",ans);
return ;
}
[AtCoder Regular Contest 096 E] Everything on It 解题报告 (第二类斯特林数+容斥原理)的更多相关文章
- AtCoder Regular Contest 096
AtCoder Regular Contest 096 C - Many Medians 题意: 有A,B两种匹萨和三种购买方案,买一个A,买一个B,买半个A和半个B,花费分别为a,b,c. 求买X个 ...
- Atcoder Regular Contest 096 D - Sweet Alchemy(贪心+多重背包)
洛谷题面传送门 & Atcoder 题面传送门 由于再过 1h 就是 NOI 笔试了所以题解写得会略有点简略. 考虑差分,记 \(b_i=c_i-c_{fa_i}\),那么根据题意有 \(b_ ...
- Atcoder Regular Contest 096 C - Everything on It(组合数学)
Atcoder 题面传送门 & 洛谷题面传送门 简单题,由于这场 arc 的 F 是 jxd 作业而我不会做,所以只好来把这场的 E 水掉了. 我们记 \(f(i)\) 为钦定 \(i\) 个 ...
- AtCoder Regular Contest 096 D - Static Sushi(线性dp)
Problem Statement "Teishi-zushi", a Japanese restaurant, is a plain restaurant with only o ...
- AtCoder Regular Contest 061
AtCoder Regular Contest 061 C.Many Formulas 题意 给长度不超过\(10\)且由\(0\)到\(9\)数字组成的串S. 可以在两数字间放\(+\)号. 求所有 ...
- AtCoder Regular Contest 094 (ARC094) CDE题解
原文链接http://www.cnblogs.com/zhouzhendong/p/8735114.html $AtCoder\ Regular\ Contest\ 094(ARC094)\ CDE$ ...
- AtCoder Regular Contest 092
AtCoder Regular Contest 092 C - 2D Plane 2N Points 题意: 二维平面上给了\(2N\)个点,其中\(N\)个是\(A\)类点,\(N\)个是\(B\) ...
- AtCoder Regular Contest 093
AtCoder Regular Contest 093 C - Traveling Plan 题意: 给定n个点,求出删去i号点时,按顺序从起点到一号点走到n号点最后回到起点所走的路程是多少. \(n ...
- AtCoder Regular Contest 094
AtCoder Regular Contest 094 C - Same Integers 题意: 给定\(a,b,c\)三个数,可以进行两个操作:1.把一个数+2:2.把任意两个数+1.求最少需要几 ...
随机推荐
- Aizu - 2306 Rabbit Party (DFS图论)
G. Rabbit Party Time Limit: 5000ms Case Time Limit: 5000ms Memory Limit: 65536KB 64-bit integer IO f ...
- iOS开发中的NSDateFormatter日期格式解析总结
在工作中,常常遇到将时间解析出来转换成自己相应要求的时间格式,之前也有收集相应的转换格式,如今将自己收集的一部分了做个分享,应该比較完好了,欢迎大家继续补充 年 y 将年份 (0-9) 显示为不带前导 ...
- Qt实战之酷狗音乐
此项目仅仅实现实现基本功能: 界面的模仿. 歌词功能的实现.歌曲在线试听和下载. 专辑写真的播放. 在线歌词搜索.以及主要的button功能. 界面没有採用设计器. 所有手写规划.这里先放出效果图. ...
- HTML打开摄像头,进行拍照上传
html代码 <%@ page language="java" contentType="text/html; charset=utf-8" pageEn ...
- windows模式编译
//预编译,linker链接,Windows模式#pragma comment(linker,"/subsystem:\"windows\" /entry:\" ...
- Codeforces 701E Connecting Universities 贪心
链接 Codeforces 701E Connecting Universities 题意 n个点的树,给你2*K个点,分成K对,使得两两之间的距离和最大 思路 贪心,思路挺巧妙的.首先dfs一遍记录 ...
- NVMe到底是什么?
转:http://www.expreview.com/42142.html 有关注SSD的朋友应该今年听到NVMe这个词的频率应该不低,随着高端SSD的战场已经抛弃SATA向PCI-E转移,老旧的AH ...
- (转载) Android RecyclerView 使用完全解析 体验艺术般的控件
Android RecyclerView 使用完全解析 体验艺术般的控件 标签: Recyclerviewpager瀑布流 2015-04-16 09:07 721474人阅读 评论(458) 收藏 ...
- Caffe学习--Layer分析
Caffe_Layer 1.基本数据结构 //Layer层主要的的参数 LayerParamter layer_param_; // protobuf内的layer参数 vector<share ...
- express + multer 文件上传入门
写在前面的 在web开发中,我们经常会遇到图片上传的功能,接下来我们就在express4.15.0框架中利用multer1.3.0模块来实现图片上传 开始敲代码 首先利用express-generat ...