题目链接:https://arc096.contest.atcoder.jp/tasks/arc096_c

Time limit : 4sec / Memory limit : 512MB

Score : 900 points

Problem Statement

In "Takahashi-ya", a ramen restaurant, basically they have one menu: "ramen", but N kinds of toppings are also offered. When a customer orders a bowl of ramen, for each kind of topping, he/she can choose whether to put it on top of his/her ramen or not. There is no limit on the number of toppings, and it is allowed to have all kinds of toppings or no topping at all. That is, considering the combination of the toppings, 2N types of ramen can be ordered.

Akaki entered Takahashi-ya. She is thinking of ordering some bowls of ramen that satisfy both of the following two conditions:

  • Do not order multiple bowls of ramen with the exactly same set of toppings.
  • Each of the N kinds of toppings is on two or more bowls of ramen ordered.

You are given N and a prime number M. Find the number of the sets of bowls of ramen that satisfy these conditions, disregarding order, modulo M. Since she is in extreme hunger, ordering any number of bowls of ramen is fine.

Constraints

  • 2≤N≤3000
  • 10^8≤M≤10^9+9
  • N is an integer.
  • M is a prime number.

Subscores

  • 600 points will be awarded for passing the test set satisfying N≤50.

Input

Input is given from Standard Input in the following format:

N M

Output

Print the number of the sets of bowls of ramen that satisfy the conditions, disregarding order, modulo M.


Sample Input 1

Copy
2 1000000007

Sample Output 1

Copy
2

Let the two kinds of toppings be A and B. Four types of ramen can be ordered: "no toppings", "with A", "with B" and "with A, B". There are two sets of ramen that satisfy the conditions:

  • The following three ramen: "with A", "with B", "with A, B".
  • Four ramen, one for each type.

Sample Input 2

3 1000000009

Sample Output 2

118

Let the three kinds of toppings be A, B and C. In addition to the four types of ramen above, four more types of ramen can be ordered, where C is added to the above four. There are 118 sets of ramen that satisfy the conditions, and here are some of them:

  • The following three ramen: "with A, B", "with A, C", "with B, C".
  • The following five ramen: "no toppings", "with A", "with A, B", "with B, C", "with A, B, C".
  • Eight ramen, one for each type.

Note that the set of the following three does not satisfy the condition: "'with A', 'with B', 'with A, B'", because C is not on any of them.


Sample Input 3

50 111111113

Sample Output 3

1456748

Remember to print the number of the sets modulo M. Note that these three sample inputs above are included in the test set for the partial score.


Sample Input 4

3000 123456791

Sample Output 4

16369789

题目大意:有 N 种调味剂, 现在要做一些拉面, 每碗拉面中可以放入任意种 类的调味剂, 但必须满足没有两碗拉面使用的调味剂集合相同, 且每种调味剂至少出现在两碗拉面中.

求方案数模一个质数.N ≤ 3000.

我们发现拉面是随便多少碗的,考虑容斥。定义调味剂不合法为调味剂只出现了1次或没有出现,ans=(0个调味剂不合法,其他任意) - (1个调味剂不合法,其他任意) + (2个调味剂不合法,其他任意)…………

写出来就是,注意不合法的调味剂我们还要乘上组合数

f(i)是指有i个调味剂不合法,其他调味剂任意的方案数.

考虑怎么计算f[i],f[i]=Σ(g[i][j]*2(n−i)j)*2(2^(n-i))

g[i][j]为在j碗面中有i种是不合法调味剂的方案数,然后剩下的n-i种调味剂可以随便放在这j碗面里,也可以放在j碗面之外(j<=i)

考虑放在j碗面里总共有 2(n-i) 种放的状态,一共j碗面,方案数就是2(n−i)j

考虑放在j碗面之外,同样有2(n-i)种放的状态,每一种状态都有可能出现或者没有,方案数就是2(2^(n-i))和上面那个之所以形式上不一样是因为这个不限制个数

预处理出组合数和g数组,g数组的递推式:g[i][j]=g[i-1][j-1]+g[i-1][j]*(j+1)(第二类斯特林数)。这样递推的原因是,当有i-1种坏酱在j-1碗面中时,第i种酱就必定在第j碗面中;或者i-1种酱在j碗面中,那第i种酱可以在任意j碗面中,或者压根就没加入任意j碗面中,所以是乘于j+1

值得注意的是,我们在计算2(2^(n-i)) 的时候,作为指数的(2^(n-i))取模并不是模上mod,而是模上mod-1,也就是mod的欧拉函数值(欧拉定理)

代码如下:

#include<iostream>
#include<cstdio>
#include<algorithm>
#define ll long long
using namespace std; const int maxn=3e3+;
ll n,mod;
ll g[maxn][maxn],c[maxn][maxn];
ll mul(ll a,ll b,ll p)
{
ll r=;
for (;b;b>>=,a=(a+a)%p) if (b&) r=(r+a)%p;
return r;
}
ll qpow(ll a,ll b,ll p)
{
ll r=;
for (;b;b>>=,a=mul(a,a,p)) if (b&) r=mul(r,a,p);
return r;
}
int main()
{
scanf("%lld%lld",&n,&mod);
for (int i=;i<=n;i++)
{
c[i][]=c[i][i]=;
for (int j=;j<i;j++)
c[i][j]=(c[i-][j]+c[i-][j-])%mod;
}
for (int i=;i<=n;i++)
{
g[i][]=;
for (int j=;j<=i;j++)
g[i][j]=(g[i-][j-]+g[i-][j]*(j+)%mod)%mod;
}
ll ans=;
for (int i=;i<=n;i++)
{
ll k=c[n][i];
if (i&) k=(mod-k)%mod;
ll x=qpow(,n-i,mod-);//欧拉定理,注意模数
x=qpow(,x,mod);
ll kind=qpow(,n-i,mod);
ll cnt=,y=;
for (int j=;j<=i;j++)
{
cnt=(cnt+(g[i][j]*y%mod))%mod;
y=kind*y%mod;
}
ans=(ans+(k*cnt%mod*x%mod))%mod;
}
printf("%lld\n",ans);
return ;
}

[AtCoder Regular Contest 096 E] Everything on It 解题报告 (第二类斯特林数+容斥原理)的更多相关文章

  1. AtCoder Regular Contest 096

    AtCoder Regular Contest 096 C - Many Medians 题意: 有A,B两种匹萨和三种购买方案,买一个A,买一个B,买半个A和半个B,花费分别为a,b,c. 求买X个 ...

  2. Atcoder Regular Contest 096 D - Sweet Alchemy(贪心+多重背包)

    洛谷题面传送门 & Atcoder 题面传送门 由于再过 1h 就是 NOI 笔试了所以题解写得会略有点简略. 考虑差分,记 \(b_i=c_i-c_{fa_i}\),那么根据题意有 \(b_ ...

  3. Atcoder Regular Contest 096 C - Everything on It(组合数学)

    Atcoder 题面传送门 & 洛谷题面传送门 简单题,由于这场 arc 的 F 是 jxd 作业而我不会做,所以只好来把这场的 E 水掉了. 我们记 \(f(i)\) 为钦定 \(i\) 个 ...

  4. AtCoder Regular Contest 096 D - Static Sushi(线性dp)

    Problem Statement "Teishi-zushi", a Japanese restaurant, is a plain restaurant with only o ...

  5. AtCoder Regular Contest 061

    AtCoder Regular Contest 061 C.Many Formulas 题意 给长度不超过\(10\)且由\(0\)到\(9\)数字组成的串S. 可以在两数字间放\(+\)号. 求所有 ...

  6. AtCoder Regular Contest 094 (ARC094) CDE题解

    原文链接http://www.cnblogs.com/zhouzhendong/p/8735114.html $AtCoder\ Regular\ Contest\ 094(ARC094)\ CDE$ ...

  7. AtCoder Regular Contest 092

    AtCoder Regular Contest 092 C - 2D Plane 2N Points 题意: 二维平面上给了\(2N\)个点,其中\(N\)个是\(A\)类点,\(N\)个是\(B\) ...

  8. AtCoder Regular Contest 093

    AtCoder Regular Contest 093 C - Traveling Plan 题意: 给定n个点,求出删去i号点时,按顺序从起点到一号点走到n号点最后回到起点所走的路程是多少. \(n ...

  9. AtCoder Regular Contest 094

    AtCoder Regular Contest 094 C - Same Integers 题意: 给定\(a,b,c\)三个数,可以进行两个操作:1.把一个数+2:2.把任意两个数+1.求最少需要几 ...

随机推荐

  1. linux定时备份mysql数据库文件

    1.设定定时器:终端敲入:crontab -e命令 2,然后写入     00 23 * * * /home/db_bak_file/dbbak.sh >>/home/db_bak_fil ...

  2. MyEclipse打包可运行的jar包

    详细步骤: Export... -> java -> Runnable JAR file Launch configuration:选择main方法所在的文件/类 Export desti ...

  3. 浅谈SaaS应用开发的难度

    近期做SaaS应用的非常多,这样的模式是未来的一种趋势,这样的模式的最大优点就是云计算的优点--节约资源.网上有非常多人觉得SaaS非常easy,就是一个多用户租赁模式.这样的认识也不能说不正确.由于 ...

  4. HDU 3966 Aragorn's Story 树链剖分+BIT区间修改/单点询问

    Aragorn's Story Description Our protagonist is the handsome human prince Aragorn comes from The Lord ...

  5. httpClient模拟登陆校内某系统

    package com.huowolf; import java.util.ArrayList; import java.util.List; import org.apache.http.HttpE ...

  6. bzoj2150: 部落战争(匈牙利)

    2150: 部落战争 题目:传送门 题解: 辣鸡数据..毁我AC率 先说做法,很容易就可以看出是二分图匹配的最小路径覆盖(可能是之前不久刚做过类似的题) 一开始还傻逼逼的去直接连边然后准备跑floyd ...

  7. [JZOJ 5893] [NOIP2018模拟10.4] 括号序列 解题报告 (Hash+栈+map)

    题目链接: https://jzoj.net/senior/#main/show/5893 题目: 题解: 考虑暴力怎么做,我们枚举左端点,维护一个栈,依次加入元素,与栈顶元素和栈内第二个元素相同时弹 ...

  8. Jquery 设置class 和 div CSS

    Jquery 设置class 和 div CSS 1 Jquery 根据标签内容获取标签div,从而修改该div CLASS //追加 $('label:contains("labelcon ...

  9. ActiveMQ学习笔记(14)----Destination高级特性(二)

    1. Visual Destinations 1.1 概述 虚拟Destination用来创建逻辑Destinations,客户端可以通过它来产生和消费消息,它会把消息映射到物理Destination ...

  10. 《Unix环境高级编程》读书笔记 第7章-进程环境

    1. main函数 int main( int argc, char *argv[] ); argc是命令行参数的数目,包括程序名在内 argv是指向参数的各个指针所构成的数组,即指针数组 当内核执行 ...