题目链接:https://arc096.contest.atcoder.jp/tasks/arc096_c

Time limit : 4sec / Memory limit : 512MB

Score : 900 points

Problem Statement

In "Takahashi-ya", a ramen restaurant, basically they have one menu: "ramen", but N kinds of toppings are also offered. When a customer orders a bowl of ramen, for each kind of topping, he/she can choose whether to put it on top of his/her ramen or not. There is no limit on the number of toppings, and it is allowed to have all kinds of toppings or no topping at all. That is, considering the combination of the toppings, 2N types of ramen can be ordered.

Akaki entered Takahashi-ya. She is thinking of ordering some bowls of ramen that satisfy both of the following two conditions:

  • Do not order multiple bowls of ramen with the exactly same set of toppings.
  • Each of the N kinds of toppings is on two or more bowls of ramen ordered.

You are given N and a prime number M. Find the number of the sets of bowls of ramen that satisfy these conditions, disregarding order, modulo M. Since she is in extreme hunger, ordering any number of bowls of ramen is fine.

Constraints

  • 2≤N≤3000
  • 10^8≤M≤10^9+9
  • N is an integer.
  • M is a prime number.

Subscores

  • 600 points will be awarded for passing the test set satisfying N≤50.

Input

Input is given from Standard Input in the following format:

N M

Output

Print the number of the sets of bowls of ramen that satisfy the conditions, disregarding order, modulo M.


Sample Input 1

Copy
2 1000000007

Sample Output 1

Copy
2

Let the two kinds of toppings be A and B. Four types of ramen can be ordered: "no toppings", "with A", "with B" and "with A, B". There are two sets of ramen that satisfy the conditions:

  • The following three ramen: "with A", "with B", "with A, B".
  • Four ramen, one for each type.

Sample Input 2

3 1000000009

Sample Output 2

118

Let the three kinds of toppings be A, B and C. In addition to the four types of ramen above, four more types of ramen can be ordered, where C is added to the above four. There are 118 sets of ramen that satisfy the conditions, and here are some of them:

  • The following three ramen: "with A, B", "with A, C", "with B, C".
  • The following five ramen: "no toppings", "with A", "with A, B", "with B, C", "with A, B, C".
  • Eight ramen, one for each type.

Note that the set of the following three does not satisfy the condition: "'with A', 'with B', 'with A, B'", because C is not on any of them.


Sample Input 3

50 111111113

Sample Output 3

1456748

Remember to print the number of the sets modulo M. Note that these three sample inputs above are included in the test set for the partial score.


Sample Input 4

3000 123456791

Sample Output 4

16369789

题目大意:有 N 种调味剂, 现在要做一些拉面, 每碗拉面中可以放入任意种 类的调味剂, 但必须满足没有两碗拉面使用的调味剂集合相同, 且每种调味剂至少出现在两碗拉面中.

求方案数模一个质数.N ≤ 3000.

我们发现拉面是随便多少碗的,考虑容斥。定义调味剂不合法为调味剂只出现了1次或没有出现,ans=(0个调味剂不合法,其他任意) - (1个调味剂不合法,其他任意) + (2个调味剂不合法,其他任意)…………

写出来就是,注意不合法的调味剂我们还要乘上组合数

f(i)是指有i个调味剂不合法,其他调味剂任意的方案数.

考虑怎么计算f[i],f[i]=Σ(g[i][j]*2(n−i)j)*2(2^(n-i))

g[i][j]为在j碗面中有i种是不合法调味剂的方案数,然后剩下的n-i种调味剂可以随便放在这j碗面里,也可以放在j碗面之外(j<=i)

考虑放在j碗面里总共有 2(n-i) 种放的状态,一共j碗面,方案数就是2(n−i)j

考虑放在j碗面之外,同样有2(n-i)种放的状态,每一种状态都有可能出现或者没有,方案数就是2(2^(n-i))和上面那个之所以形式上不一样是因为这个不限制个数

预处理出组合数和g数组,g数组的递推式:g[i][j]=g[i-1][j-1]+g[i-1][j]*(j+1)(第二类斯特林数)。这样递推的原因是,当有i-1种坏酱在j-1碗面中时,第i种酱就必定在第j碗面中;或者i-1种酱在j碗面中,那第i种酱可以在任意j碗面中,或者压根就没加入任意j碗面中,所以是乘于j+1

值得注意的是,我们在计算2(2^(n-i)) 的时候,作为指数的(2^(n-i))取模并不是模上mod,而是模上mod-1,也就是mod的欧拉函数值(欧拉定理)

代码如下:

#include<iostream>
#include<cstdio>
#include<algorithm>
#define ll long long
using namespace std; const int maxn=3e3+;
ll n,mod;
ll g[maxn][maxn],c[maxn][maxn];
ll mul(ll a,ll b,ll p)
{
ll r=;
for (;b;b>>=,a=(a+a)%p) if (b&) r=(r+a)%p;
return r;
}
ll qpow(ll a,ll b,ll p)
{
ll r=;
for (;b;b>>=,a=mul(a,a,p)) if (b&) r=mul(r,a,p);
return r;
}
int main()
{
scanf("%lld%lld",&n,&mod);
for (int i=;i<=n;i++)
{
c[i][]=c[i][i]=;
for (int j=;j<i;j++)
c[i][j]=(c[i-][j]+c[i-][j-])%mod;
}
for (int i=;i<=n;i++)
{
g[i][]=;
for (int j=;j<=i;j++)
g[i][j]=(g[i-][j-]+g[i-][j]*(j+)%mod)%mod;
}
ll ans=;
for (int i=;i<=n;i++)
{
ll k=c[n][i];
if (i&) k=(mod-k)%mod;
ll x=qpow(,n-i,mod-);//欧拉定理,注意模数
x=qpow(,x,mod);
ll kind=qpow(,n-i,mod);
ll cnt=,y=;
for (int j=;j<=i;j++)
{
cnt=(cnt+(g[i][j]*y%mod))%mod;
y=kind*y%mod;
}
ans=(ans+(k*cnt%mod*x%mod))%mod;
}
printf("%lld\n",ans);
return ;
}

[AtCoder Regular Contest 096 E] Everything on It 解题报告 (第二类斯特林数+容斥原理)的更多相关文章

  1. AtCoder Regular Contest 096

    AtCoder Regular Contest 096 C - Many Medians 题意: 有A,B两种匹萨和三种购买方案,买一个A,买一个B,买半个A和半个B,花费分别为a,b,c. 求买X个 ...

  2. Atcoder Regular Contest 096 D - Sweet Alchemy(贪心+多重背包)

    洛谷题面传送门 & Atcoder 题面传送门 由于再过 1h 就是 NOI 笔试了所以题解写得会略有点简略. 考虑差分,记 \(b_i=c_i-c_{fa_i}\),那么根据题意有 \(b_ ...

  3. Atcoder Regular Contest 096 C - Everything on It(组合数学)

    Atcoder 题面传送门 & 洛谷题面传送门 简单题,由于这场 arc 的 F 是 jxd 作业而我不会做,所以只好来把这场的 E 水掉了. 我们记 \(f(i)\) 为钦定 \(i\) 个 ...

  4. AtCoder Regular Contest 096 D - Static Sushi(线性dp)

    Problem Statement "Teishi-zushi", a Japanese restaurant, is a plain restaurant with only o ...

  5. AtCoder Regular Contest 061

    AtCoder Regular Contest 061 C.Many Formulas 题意 给长度不超过\(10\)且由\(0\)到\(9\)数字组成的串S. 可以在两数字间放\(+\)号. 求所有 ...

  6. AtCoder Regular Contest 094 (ARC094) CDE题解

    原文链接http://www.cnblogs.com/zhouzhendong/p/8735114.html $AtCoder\ Regular\ Contest\ 094(ARC094)\ CDE$ ...

  7. AtCoder Regular Contest 092

    AtCoder Regular Contest 092 C - 2D Plane 2N Points 题意: 二维平面上给了\(2N\)个点,其中\(N\)个是\(A\)类点,\(N\)个是\(B\) ...

  8. AtCoder Regular Contest 093

    AtCoder Regular Contest 093 C - Traveling Plan 题意: 给定n个点,求出删去i号点时,按顺序从起点到一号点走到n号点最后回到起点所走的路程是多少. \(n ...

  9. AtCoder Regular Contest 094

    AtCoder Regular Contest 094 C - Same Integers 题意: 给定\(a,b,c\)三个数,可以进行两个操作:1.把一个数+2:2.把任意两个数+1.求最少需要几 ...

随机推荐

  1. JavaScript正則表達式知识汇总

    Js 正則表達式知识汇总 正則表達式: 1.什么是RegExp?RegExp是正則表達式的缩写.RegExp 对象用于规定在文本中检索的内容. 2.定义RegExp:var +变量名=new RegE ...

  2. 前端project师养成记:开发环境搭建(Sublime Text必备插件推荐)

    为了让自己更像一个前端project师,决定从开发环境開始武装自己. 本文将介绍前段project师开发的一些利器的安装步骤,主要包含了: 1.Node.js的安装 2.Grunt的安装及经常使用插件 ...

  3. OSGI项目中获取文件路径

    假设想依据给定的文件名创建一个File实例,你可能会这么写: File file = new File(当前类.class.getResource("config").toURI( ...

  4. Ubuntu新建用户并加入SUDO组

    Ubuntu新建用户并加入SUDO组 新建用户: adduser xxxx 加入用户组: usermod -aG sudo username

  5. 001.ActiveMQ概述

    1. 概念 ActiveMQ是Apache推出的,一款开源的,完全支持JMS1.1和J2EE1.4规范的JMS Provider实现的消息中间件(Message Oriented Middleware ...

  6. <Three.js>(第三节)全景漫游

    一.实验内容 通过上次实验,了解了Three.js创建场景的基本步骤.这一节,我们将通过Three.js实现全景漫游功能.如下图: 全景图是获取一个3D场景中的不同角度的图片,然后通过拼接.融合实现3 ...

  7. Activiti 23张表及7大服务详解

    7大服务介绍 服务名称 描述 RepositoryService Activiti 中每一个不同版本的业务流程的定义都需要使用一些定义文件,部署文件和支持数据 ( 例如 BPMN2.0 XML 文件, ...

  8. LCD段码驱动

    假如要第3个数码关显示“8.”,则3A-3D均得为1,即Seg3和Seg4均得为1.假设模具Seg和驱动芯片Seg对应,则只需往HT1621的地址Seg3和Seg4分半发送0xF. 注意:HT1621 ...

  9. Ini配置文件操作

    package cn.com.szhtkj.util; import java.io.File; import java.io.FileOutputStream; import java.io.IOE ...

  10. Hadoop_HDFS-基础知识摘要

    Hadoop典型应用有:搜索.日志处理.推荐系统.数据分析.视频图像分析.数据保存等.0.数据要首先分块 Block:将一个文件进行分块,通常是64M. NameNode:--管理节点保存整个文件系统 ...