luogu P4213 【模板】杜教筛(Sum)
Code:
#include <bits/stdc++.h>
#include <tr1/unordered_map>
using namespace std;
using namespace tr1;
#define ll long long
#define setIO(s) freopen(s".in","r",stdin)
#define maxn 5000009
#define N 2147483647
#define ull unsigned long long
ull phi[maxn],mu[maxn],prime[maxn];
int vis[maxn];
int tot;
void init(){
vis[1] =1, mu[1] = 1,phi[1] = 1;
for(int i = 2;i < maxn; ++i) {
if(!vis[i]) mu[i] = -1,phi[i] = i - 1, prime[++tot] = i;
for(int j = 1;j <= tot&&prime[j]*i < maxn; ++j) {
vis[prime[j]*i] = 1;
if(i % prime[j]!=0) phi[i * prime[j]] = (prime[j]-1) * phi[i],mu[i*prime[j]]=-mu[i];
else {
phi[i*prime[j]]=phi[i]*prime[j];
mu[i*prime[j]]=0;
break;
}
}
}
for(int i = 1;i < maxn; ++i) mu[i] += mu[i-1],phi[i]+=phi[i-1];
} unordered_map<int,ull>ansmu,ansphi;
inline ll get_mu(int n){
if(n < maxn) return mu[n];
if(ansmu[n]) return ansmu[n];
ll ans = 0;
for(int l = 2,r;r < N && l <= n;l = r + 1)
r = n / (n / l),ans += (r - l + 1) * get_mu(n/l);
return ansmu[n] = 1ull-ans;
}
inline ll get_phi(int n){
if(n < maxn) return phi[n];
if(ansphi[n]) return ansphi[n];
ll ans = 0;
for(int l = 2,r;r < N&&l<=n;l = r + 1)
r = n / (n / l),ans += (r - l + 1) * get_phi(n / l);
return ansphi[n]=(ull)n*(n+1ll)/2ll-ans;
}
int main(){
//setIO("input");
init();
int T,n;
scanf("%d",&T);
while(T--){
scanf("%d",&n);
printf("%lld %lld\n",get_phi(n),get_mu(n));
}
return 0;
}
luogu P4213 【模板】杜教筛(Sum)的更多相关文章
- p4213 【模板】杜教筛(Sum)
传送门 分析 我们知道 $\varphi * 1 = id$ $\mu * 1 = e$ 杜教筛即可 代码 #include<iostream> #include<cstdio> ...
- luoguP4213 [模板]杜教筛
https://www.luogu.org/problemnew/show/P4213 同 bzoj3944 考虑用杜教筛求出莫比乌斯函数前缀和,第二问随便过,第一问用莫比乌斯反演来做,中间的整除分块 ...
- [模板] 杜教筛 && bzoj3944-Sum
杜教筛 浅谈一类积性函数的前缀和 - skywalkert's space - CSDN博客 杜教筛可以在\(O(n^{\frac 23})\)的时间复杂度内利用卷积求出一些积性函数的前缀和. 算法 ...
- 洛谷P4213(杜教筛)
#include <bits/stdc++.h> using namespace std; typedef long long LL; const int maxn = 3e6 + 3; ...
- LG4213 【模板】杜教筛(Sum)和 BZOJ4916 神犇和蒟蒻
P4213 [模板]杜教筛(Sum) 题目描述 给定一个正整数$N(N\le2^{31}-1)$ 求 $$ans_1=\sum_{i=1}^n\varphi(i)$$ $$ans_2=\sum_{i= ...
- 51NOD 1222 最小公倍数计数 [莫比乌斯反演 杜教筛]
1222 最小公倍数计数 题意:求有多少数对\((a,b):a<b\)满足\(lcm(a,b) \in [1, n]\) \(n \le 10^{11}\) 卡内存! 枚举\(gcd, \fra ...
- Luogu 4213 【模板】杜教筛(Sum)
当作杜教筛的笔记吧. 杜教筛 要求一个积性函数$f(i)$的前缀和,现在这个东西并不是很好算,那么我们考虑让它卷上另外一个积性函数$g(i)$,使$(f * g)$的前缀和变得方便计算,然后再反推出这 ...
- [洛谷P4213]【模板】杜教筛(Sum)
题目大意:给你$n$,求:$$\sum\limits_{i=1}^n\varphi(i),\sum\limits_{i=1}^n\mu(i)$$最多$10$组数据,$n\leqslant2^{31}- ...
- P4213 【模板】杜教筛(Sum)
\(\color{#0066ff}{题 目 描 述}\) 给定一个正整数\(N(N\le2^{31}-1)\) 求 \(\begin{aligned} ans_1=\sum_{i=1}^n\varph ...
- P4213【模板】杜教筛(Sum)
思路:杜教筛 提交:\(2\)次 错因:\(\varphi(i)\)的前缀和用\(int\)存的 题解: 对于一类筛积性函数前缀和的问题,杜教筛可以以低于线性的时间复杂度来解决问题. 先要构造\(h= ...
随机推荐
- mysql出错ERROR 2003 (HY000): Can't connect to MySQL server on 'localhost' (10061)
其他的贴会教你 1.键盘上win+r 2.输入cmd 3.输入net start mysql 但是还是没用 你可以试试 1.右击开始菜单 2.点击windows PowerShell(i) 3.输入 ...
- 序列模型(4)----门控循环单元(GRU)
一.GRU 其中, rt表示重置门,zt表示更新门. 重置门决定是否将之前的状态忘记.(作用相当于合并了 LSTM 中的遗忘门和传入门) 当rt趋于0的时候,前一个时刻的状态信息ht−1会被忘掉,隐藏 ...
- SLAB
slab:由于内核会有许多小对象,这些对象构造销毁十分频繁,比如i-node,dentry,这些对象如果每次构建的时候就向内存要一个页(4kb),而其实只有几个字节,这样就会非常浪费,为了解决这个问题 ...
- Project Euler 50 Consecutive prime sum
题意: 素数41可以写成六个连续素数的和: 41 = 2 + 3 + 5 + 7 + 11 + 13 在小于一百的素数中,41能够被写成最多的连续素数的和. 在小于一千的素数中,953能够被写成最多的 ...
- Project Euler 43 Sub-string divisibility
题意: 1406357289是一个0至9全数字数,因为它由0到9这十个数字排列而成:但除此之外,它还有一个有趣的性质:子串的可整除性.记d1是它的第一个数字,d2是第二个数字,依此类推,我们注意到: ...
- 训练1-W
有一个长度为n(n<=100)的数列,该数列定义为从2开始的递增有序偶数,现在要求你按照顺序每m个数求出一个平均值,如果最后不足m个,则以实际数量求平均值.编程输出该平均值序列. Input 输 ...
- Python for json
# Json- json格式是一个键值对形式的数据集 - key:字符串 - value:字符串,数字,列表,json - json使用大括号包裹 - 键值对直接用逗号隔开 - json和Python ...
- python第七周:反射、异常
1.反射: 1.1定义:通过字符串映射或修改程序运行时的状态.属性.方法 1.2有以下四个方法: (1)hasattr(object,str) 判断object对象中是否有对应的方法或属性,返回值:T ...
- PHP学习总结(9)——PHP入门篇之WAMPServer服务控制面板介绍
及MySQL数据库的整合软件包.免去了开发人员将时间花费在繁琐的配置环境过程,从而腾出更多精力去做开发.在windows下将Apache+PHP+Mysql 集成环境,拥有简单的图形和菜单安装和配置环 ...
- (1)spring boot起步之Hello World【从零开始学Spring Boot】
Spring Boot交流平台 1.1 介绍 自从structs2出现上次的漏洞以后,对spring的关注度开始越来越浓. 以前spring开发需要配置一大堆的xml,后台spring加入了annot ...