D. Valid Sets
 

As you know, an undirected connected graph with n nodes and n - 1 edges is called a tree. You are given an integer d and a tree consisting of n nodes. Each node i has a value ai associated with it.

We call a set S of tree nodes valid if following conditions are satisfied:

  1. S is non-empty.
  2. S is connected. In other words, if nodes u and v are in S, then all nodes lying on the simple path between u and v should also be presented in S.
  3. .

Your task is to count the number of valid sets. Since the result can be very large, you must print its remainder modulo 1000000007(109 + 7).

Input

The first line contains two space-separated integers d (0 ≤ d ≤ 2000) and n (1 ≤ n ≤ 2000).

The second line contains n space-separated positive integers a1, a2, ..., an(1 ≤ ai ≤ 2000).

Then the next n - 1 line each contain pair of integers u and v (1 ≤ u, v ≤ n) denoting that there is an edge between u and v. It is guaranteed that these edges form a tree.

Output

Print the number of valid sets modulo 1000000007.

Sample test(s)
input
1 4
2 1 3 2
1 2
1 3
3 4
output
8
 
Note

In the first sample, there are exactly 8 valid sets: {1}, {2}, {3}, {4}, {1, 2}, {1, 3}, {3, 4} and {1, 3, 4}. Set {1, 2, 3, 4} is not valid, because the third condition isn't satisfied. Set {1, 4} satisfies the third condition, but conflicts with the second condition.

题意:给你一个n点的树,和每个点的权值,问你多少种子树满足(最大权值点-最小权值点)<=d

题解:定义dp[i]表示以i为最小权值根节点的子树方案数,注意维护此条件

于是答案就是  ∑dp[i] %mod (1<=i<=n);

///
#include<bits/stdc++.h>
using namespace std ;
typedef long long ll;
#define mem(a) memset(a,0,sizeof(a))
#define pb push_back
#define meminf(a) memset(a,127,sizeof(a)); inline ll read()
{
ll x=,f=;char ch=getchar();
while(ch<''||ch>''){
if(ch=='-')f=-;ch=getchar();
}
while(ch>=''&&ch<=''){
x=x*+ch-'';ch=getchar();
}return x*f;
}
//****************************************
#define maxn 2000+50
#define mod 1000000007
#define inf 1000000007
int d,n,a[maxn],vis[maxn];
vector<int >G[maxn];
ll dp[maxn];//以i为最小根节点,的方案数
void dfs(int x,int pre){
dp[x]=;vis[x]=;
for(int i=;i<G[x].size();i++){
if(!vis[G[x][i]]){
if(a[G[x][i]]<a[pre]||a[G[x][i]]>a[pre]+d)continue;
if(a[G[x][i]]==a[pre]&&G[x][i]<pre)continue;
dfs(G[x][i],pre);
dp[x]=(dp[x]*(dp[G[x][i]]+))%mod;
}
}
} int main(){
d=read(),n=read();
for(int i=;i<=n;i++){
scanf("%d",&a[i]);
}int u,v;
for(int i=;i<n;i++){
scanf("%d%d",&u,&v);
G[u].pb(v);G[v].pb(u);
}ll ans=;
for(int i=;i<=n;i++){
mem(dp);mem(vis);
dfs(i,i);
ans=(ans+dp[i])%mod;
}
cout<<ans<<endl;
return ;
}

代码

Codeforces Round #277 (Div. 2) D. Valid Sets DP的更多相关文章

  1. Codeforces Round #277 (Div. 2) D. Valid Sets (DP DFS 思维)

    D. Valid Sets time limit per test 1 second memory limit per test 256 megabytes input standard input ...

  2. Codeforces Round #277 (Div. 2) D. Valid Sets 暴力

    D. Valid Sets Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://codeforces.com/contest/486/problem ...

  3. Codeforces Round #277 (Div. 2)D(树形DP计数类)

    D. Valid Sets time limit per test 1 second memory limit per test 256 megabytes input standard input ...

  4. Codeforces Round #277 (Div. 2) 题解

    Codeforces Round #277 (Div. 2) A. Calculating Function time limit per test 1 second memory limit per ...

  5. 【codeforces】Codeforces Round #277 (Div. 2) 解读

    门户:Codeforces Round #277 (Div. 2) 486A. Calculating Function 裸公式= = #include <cstdio> #include ...

  6. 贪心+构造 Codeforces Round #277 (Div. 2) C. Palindrome Transformation

    题目传送门 /* 贪心+构造:因为是对称的,可以全都左一半考虑,过程很简单,但是能想到就很难了 */ /************************************************ ...

  7. 套题 Codeforces Round #277 (Div. 2)

    A. Calculating Function 水题,分奇数偶数处理一下就好了 #include<stdio.h> #include<iostream> using names ...

  8. Codeforces Round #277(Div 2) A、B、C、D、E题解

    转载请注明出处: http://www.cnblogs.com/fraud/          ——by fraud A. Calculating Function 水题,判个奇偶即可 #includ ...

  9. Codeforces Round #174 (Div. 1) B. Cow Program(dp + 记忆化)

    题目链接:http://codeforces.com/contest/283/problem/B 思路: dp[now][flag]表示现在在位置now,flag表示是接下来要做的步骤,然后根据题意记 ...

随机推荐

  1. iOS图片瘦身总结

    前言 最近在公司写了个小程序来为iOS应用中的图片瘦身,进而减小APP大小,减少用户下载时的流量. 瘦身是在一个专门为图片瘦身的网站进行的. 地址:https://tinypng.com 这个网站提供 ...

  2. Windows下apache+tomcat负载均衡

    Windows下apache+tomcat负载均衡 网上已经有很多的资料,但是很多都比较零碎,需要整合一起才能搭建出理想的负载均衡,正好前段时间搭建了windows与linux下的负载均衡,在此记录, ...

  3. [Android]异常8-android.view.WindowManager$BadTokenException

    背景:Service服务中使用WindowManager时,Android4.4使用正常,Android6.0使用应用崩溃停止运行,提示android.view.WindowManager$BadTo ...

  4. Android开发高手课笔记 - 01 崩溃优化(上):关于“崩溃”那点事

    Android 的两种崩溃 Java 崩溃就是在 Java 代码中,出现了未捕获的异常,导致程序异常退出 Native 崩溃一般都是因为在 Native 代码中访问非法地址,也可能是地址对齐出了问题, ...

  5. html5——渐变

    线性渐变 <style> div { width: 700px; height: 100px; /*方向:从右向左*/ /*起始颜色:黄色*/ /*终止颜色:绿色*/ background ...

  6. Git 分支创建

    分支策略:git上始终保持两个分支,master分支与develop分支.master分支主要用于发布时使用,而develop分支主要用于开发使用. 创建master的分支developgit che ...

  7. 如何将本地项目上传到gitlab上?

    git push后需要输入用户名,密码 这是上传成功显示的页面 打开gitLab项目地址检查代码是否被正确上传 上传前: 上传后 这就完成将项目上传到gitlab了

  8. CAD把一个DWG文件中的多个图框一次性全部插入到打开的DWG文件中

    主要用到函数说明: _DMxDrawX::InsertBlock 向控件数据库中插入一个图块,不用它插入匿名块,详细说明如下: 参数 说明 BSTR pszDwgFileName 图块定义的dwg 文 ...

  9. 常见的CPU指令集介绍

    本文摘自网络   一.X86 是微处理器执行的计算机语言指令集,指一个intel通用计算机系列的标准编号缩写,也标识一套通用的计算机指令集合,属于CISC. 1.1.简介 X86指令集是美国Intel ...

  10. VMware或者KVM克隆的虚拟机网卡无法启动

    在VMware里克隆出来的CentOS Linux.. ifconfig...没有看到eth0..然后重启网卡又报下面错误. 故障现象: service network restartShutting ...