D. Valid Sets
 

As you know, an undirected connected graph with n nodes and n - 1 edges is called a tree. You are given an integer d and a tree consisting of n nodes. Each node i has a value ai associated with it.

We call a set S of tree nodes valid if following conditions are satisfied:

  1. S is non-empty.
  2. S is connected. In other words, if nodes u and v are in S, then all nodes lying on the simple path between u and v should also be presented in S.
  3. .

Your task is to count the number of valid sets. Since the result can be very large, you must print its remainder modulo 1000000007(109 + 7).

Input

The first line contains two space-separated integers d (0 ≤ d ≤ 2000) and n (1 ≤ n ≤ 2000).

The second line contains n space-separated positive integers a1, a2, ..., an(1 ≤ ai ≤ 2000).

Then the next n - 1 line each contain pair of integers u and v (1 ≤ u, v ≤ n) denoting that there is an edge between u and v. It is guaranteed that these edges form a tree.

Output

Print the number of valid sets modulo 1000000007.

Sample test(s)
input
1 4
2 1 3 2
1 2
1 3
3 4
output
8
 
Note

In the first sample, there are exactly 8 valid sets: {1}, {2}, {3}, {4}, {1, 2}, {1, 3}, {3, 4} and {1, 3, 4}. Set {1, 2, 3, 4} is not valid, because the third condition isn't satisfied. Set {1, 4} satisfies the third condition, but conflicts with the second condition.

题意:给你一个n点的树,和每个点的权值,问你多少种子树满足(最大权值点-最小权值点)<=d

题解:定义dp[i]表示以i为最小权值根节点的子树方案数,注意维护此条件

于是答案就是  ∑dp[i] %mod (1<=i<=n);

///
#include<bits/stdc++.h>
using namespace std ;
typedef long long ll;
#define mem(a) memset(a,0,sizeof(a))
#define pb push_back
#define meminf(a) memset(a,127,sizeof(a)); inline ll read()
{
ll x=,f=;char ch=getchar();
while(ch<''||ch>''){
if(ch=='-')f=-;ch=getchar();
}
while(ch>=''&&ch<=''){
x=x*+ch-'';ch=getchar();
}return x*f;
}
//****************************************
#define maxn 2000+50
#define mod 1000000007
#define inf 1000000007
int d,n,a[maxn],vis[maxn];
vector<int >G[maxn];
ll dp[maxn];//以i为最小根节点,的方案数
void dfs(int x,int pre){
dp[x]=;vis[x]=;
for(int i=;i<G[x].size();i++){
if(!vis[G[x][i]]){
if(a[G[x][i]]<a[pre]||a[G[x][i]]>a[pre]+d)continue;
if(a[G[x][i]]==a[pre]&&G[x][i]<pre)continue;
dfs(G[x][i],pre);
dp[x]=(dp[x]*(dp[G[x][i]]+))%mod;
}
}
} int main(){
d=read(),n=read();
for(int i=;i<=n;i++){
scanf("%d",&a[i]);
}int u,v;
for(int i=;i<n;i++){
scanf("%d%d",&u,&v);
G[u].pb(v);G[v].pb(u);
}ll ans=;
for(int i=;i<=n;i++){
mem(dp);mem(vis);
dfs(i,i);
ans=(ans+dp[i])%mod;
}
cout<<ans<<endl;
return ;
}

代码

Codeforces Round #277 (Div. 2) D. Valid Sets DP的更多相关文章

  1. Codeforces Round #277 (Div. 2) D. Valid Sets (DP DFS 思维)

    D. Valid Sets time limit per test 1 second memory limit per test 256 megabytes input standard input ...

  2. Codeforces Round #277 (Div. 2) D. Valid Sets 暴力

    D. Valid Sets Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://codeforces.com/contest/486/problem ...

  3. Codeforces Round #277 (Div. 2)D(树形DP计数类)

    D. Valid Sets time limit per test 1 second memory limit per test 256 megabytes input standard input ...

  4. Codeforces Round #277 (Div. 2) 题解

    Codeforces Round #277 (Div. 2) A. Calculating Function time limit per test 1 second memory limit per ...

  5. 【codeforces】Codeforces Round #277 (Div. 2) 解读

    门户:Codeforces Round #277 (Div. 2) 486A. Calculating Function 裸公式= = #include <cstdio> #include ...

  6. 贪心+构造 Codeforces Round #277 (Div. 2) C. Palindrome Transformation

    题目传送门 /* 贪心+构造:因为是对称的,可以全都左一半考虑,过程很简单,但是能想到就很难了 */ /************************************************ ...

  7. 套题 Codeforces Round #277 (Div. 2)

    A. Calculating Function 水题,分奇数偶数处理一下就好了 #include<stdio.h> #include<iostream> using names ...

  8. Codeforces Round #277(Div 2) A、B、C、D、E题解

    转载请注明出处: http://www.cnblogs.com/fraud/          ——by fraud A. Calculating Function 水题,判个奇偶即可 #includ ...

  9. Codeforces Round #174 (Div. 1) B. Cow Program(dp + 记忆化)

    题目链接:http://codeforces.com/contest/283/problem/B 思路: dp[now][flag]表示现在在位置now,flag表示是接下来要做的步骤,然后根据题意记 ...

随机推荐

  1. Linq学习(零)-错误汇总

    问题一: Cannot execute text selection: CS0009 Metadata file 'C:\Users\Kimisme\Documents\LINQPad Plugins ...

  2. 将npm修改为cnpm

    1.更改npm的源地址 检测是否更改成功 2.用cnpm代替npm npm常用命令: npm更新:npm install -g npm npm初始化生成package.json:   npm init ...

  3. 依存分析 Dependency Parsing

    依存分析 Dependency Parsing 句子成分依存分析主要分为两种:句法级别的和语义级别的 依存句法分析 syntactic dependency parsing 语义依存分词 semant ...

  4. html5——伸缩比例案例(携程)

    1.有图片的盒子,最好是父盒子设置伸缩属性,a标签设置伸缩比例1,img标签宽度100% 2.不要见到父盒子就设置伸缩属性,而是根据子盒子是否占据一行,若是子盒子占据一行,那么只要给子盒子设置伸缩比例 ...

  5. 在CentOS6,CentOS7安装 Let'sEncrypt 免费SSL安全证书

    相对来说,个人网站建立SSL是昂贵的,而且往往过程繁琐.一个标准的2048位证书费用至少150美元/年,网站除了要支付一笔昂贵的费用.重新配置Web服务器,并需要解决大量的配置错误.这让广大中小网站望 ...

  6. HTTP常见状态码(404、400、500)等错误

    一些常见的状态码为: 200 - 服务器成功返回网页 404 - 请求的网页不存在 503 - 服务不可用 详细分解: 1xx(临时响应) 表示临时响应并需要请求者继续执行操作的状态代码. 代码 说明 ...

  7. js输出非字符串,非null值

    console.log(!"");//非空(true) console.log(!);//非0(true) console.log(!" ");//非空格(fa ...

  8. 转载:python 日期,季度,年份

    # 这个data_matrix[:,dimen] <= thresh_val 内标会返回data_matrix当中的值符合条件的,返回为True # ret_array 中就会返回 下标为Tru ...

  9. enote笔记语言(4)

    what:我想知道某个“关键词(keyword)”(即,词语,可以是概念|专业术语|.......)的定义. why:我想知道事物发生的原因:我会不会犯“归因错误”?是“单因素”的还是“多因素”的原因 ...

  10. 关于单片机编程里面调用sprintf死机的解决方法及原因分析

    好久之前的做的笔记,这里贴出. char String[100];//直接用数组代替指针即可解决 下面代代码下载至单片机中,发现会出现单片机死机问题 #include "stdio.h&qu ...