1. 形式:



    採用sigmoid函数:
    g(z)=11+e−z

    其导数为g′(z)=(1−g(z))g(z)

    如果:



    即:



    若有m个样本,则似然函数形式是:



    对数形式:



    採用梯度上升法求其最大值

    求导:



    更新规则为:



    能够发现,则个规则形式上和LMS更新规则是一样的。然而,他们的分界函数hθ(x)却全然不同样了(逻辑回归中h(x)是非线性函数)。关于这部分内容在GLM部分解释。

    注意:若h(x)不是sigmoid函数而是阈值函数:



    这个算法称为感知学习算法。尽管得到更新准则尽管类似。但与逻辑回归全然不是一个算法了。

  2. 还有一种最大化似然函数的方法–牛顿逼近法
    • 原理:如果我们想得到一个函数的过零点f(θ)=0,能够通过一下方法不断更新θ来得到:



      其直观解释例如以下图:



      给定一个初始点θ0,如果f(θ0)和其导数同号说明过零点在初始点左边。否则在初始点右边,将初始点更新过该店的切线的过零点继续上述步骤,得到的切线过零点会不断逼近终于所要求的函数过零点。

    • 应用: 在逻辑回归中。我们要求似然函数的最大(最小)值。即似然函数导数为0。 因此能够利用牛顿逼近法:



      因为lr算法中θ是一个向量,上式改写为:



      当中H为Hessian矩阵:



      牛顿法往往比(批处理)梯度下降法更快收敛。

机器学习算法笔记1_2:分类和逻辑回归(Classification and Logistic regression)的更多相关文章

  1. 分类和逻辑回归(Classification and logistic regression)

    分类问题和线性回归问题问题很像,只是在分类问题中,我们预测的y值包含在一个小的离散数据集里.首先,认识一下二元分类(binary classification),在二元分类中,y的取值只能是0和1.例 ...

  2. 斯坦福CS229机器学习课程笔记 part2:分类和逻辑回归 Classificatiion and logistic regression

    Logistic Regression 逻辑回归 1.模型 逻辑回归解决的是分类问题,并且是二元分类问题(binary classification),y只有0,1两个取值.对于分类问题使用线性回归不 ...

  3. 吴恩达机器学习笔记22-正则化逻辑回归模型(Regularized Logistic Regression)

    针对逻辑回归问题,我们在之前的课程已经学习过两种优化算法:我们首先学习了使用梯度下降法来优化代价函数

  4. 逻辑回归模型(Logistic Regression)及Python实现

    逻辑回归模型(Logistic Regression)及Python实现 http://www.cnblogs.com/sumai 1.模型 在分类问题中,比如判断邮件是否为垃圾邮件,判断肿瘤是否为阳 ...

  5. 斯坦福机器学习视频笔记 Week3 逻辑回归与正则化 Logistic Regression and Regularization

    我们将讨论逻辑回归. 逻辑回归是一种将数据分类为离散结果的方法. 例如,我们可以使用逻辑回归将电子邮件分类为垃圾邮件或非垃圾邮件. 在本模块中,我们介绍分类的概念,逻辑回归的损失函数(cost fun ...

  6. CS229笔记:分类与逻辑回归

    逻辑回归 对于一个二分类(binary classification)问题,\(y \in \left\{0, 1\right\}\),如果直接用线性回归去预测,结果显然是非常不准确的,所以我们采用一 ...

  7. 逻辑回归原理 面试 Logistic Regression

    逻辑回归是假设数据服从独立且服从伯努利分布,多用于二分类场景,应用极大似然估计构造损失函数,并使用梯度下降法对参数进行估计.

  8. 吴恩达深度学习:2.9逻辑回归梯度下降法(Logistic Regression Gradient descent)

    1.回顾logistic回归,下式中a是逻辑回归的输出,y是样本的真值标签值 . (1)现在写出该样本的偏导数流程图.假设这个样本只有两个特征x1和x2, 为了计算z,我们需要输入参数w1.w2和b还 ...

  9. 【R语言学习笔记】 Day1 CART 逻辑回归、分类树以及随机森林的应用及对比

    1. 目的:根据人口普查数据来预测收入(预测每个个体年收入是否超过$50,000) 2. 数据来源:1994年美国人口普查数据,数据中共含31978个观测值,每个观测值代表一个个体 3. 变量介绍: ...

随机推荐

  1. 初学h5须知

    9.41.浏览器是页面的环境(类似水是鱼的环境)2.浏览器结构:title    标题,题目                           URL      网址                ...

  2. runlevel---当前Linux系统的运行等级

    Linux系统有7个运行级别(runlevel)运行级别0:系统停机状态,系统默认运行级别不能设为0,否则不能正常启动运行级别1:单用户工作状态,root权限,用于系统维护,禁止远程登陆运行级别2:多 ...

  3. 【Codeforces Round #428 (Div. 2) B】Game of the Rows

    [Link]:http://codeforces.com/contest/839/problem/B [Description] 给你n排的如题目所示的位置; 同一排中(1,2) 算相邻; (3,4) ...

  4. listview-fading 滚动条样式设置

    fadingEdge-属性用来设置拉滚动条时 ,边框渐变的方向.它有三个属性值可以设置 none:(边框颜色不变) horizontal:(水平方向颜色变淡) vertical:(垂直方向颜色变淡). ...

  5. android图像处理(3)底片效果

    这篇将讲到图片特效处理的底片效果.跟前面一样是对像素点进行处理,算法是通用的. 算法原理:将当前像素点的RGB值分别与255之差后的值作为当前点的RGB值. 例: ABC 求B点的底片效果: B.r ...

  6. native.js是什么且如何使用

    native.js是什么且如何使用 一.总结 一句话总结:Native.js技术,简称NJS,是一种将手机操作系统的原生对象转义,映射为JS对象,在JS里编写原生代码的技术.Native.js不是一个 ...

  7. Flume的client

    Client:生产数据,运行在一个独立的线程.

  8. .NET Entity Framework入门操作

    Entity Framework是微软借鉴ORM思想开发自己的一个ORM框架. ORM就是将数据库表与实体对象(相当于三层中的Model类)相互映射的一种思想. 最大的优点就是非常方便的跨数据库平台. ...

  9. 高中生活-第9篇-开学之初的“失足”囧事,"刻舟求剑"导致腿折了

    时间过得好快啊,上次发表"高中生活-第8篇:夏天的空调,冬天的味道"是2014年9月30日,一转眼,就是一年啊. 我自己以为,很多人可能都以为,我又半途而废了,实则不是哦~ 行百里 ...

  10. Vijos——T 1164曹冲养猪

    https://vijos.org/p/1164 描述 自从曹冲搞定了大象以后,曹操就开始捉摸让儿子干些事业,于是派他到中原养猪场养猪,可是曹冲满不高兴,于是在工作中马马虎虎,有一次曹操想知道母猪的数 ...