Description

Roger Wilco is in charge of the design of a low orbiting space station for the planet Mars. To simplify construction, the station is made up of a series of Airtight Cubical Modules (ACM's), which are connected together once in space. One problem that concerns Roger is that of (potentially) lethal bacteria that may reside in the upper atmosphere of Mars. Since the station will occasionally fly through the upper atmosphere, it is imperative that extra shielding be used on all faces of the ACM's touch, either edge to edge or face to face, that joint is sealed so no bacteria can sneak through. Any face of an ACM shared by another ACM will not need shielding, of course, nor will a face which cannot be reached from the outside. Roger could just put extra shielding on all of the faces of every ACM, but the cost would be prohibitive. Therefore, he wants to know the exact number of ACM faces which need the extra shielding. 

Input

Input consists of multiple problem instances. Each instance consists of a specification of a space station. We assume that each space station can fit into an n x m x k grid (1 <= n, m, k <= 60), where each grid cube may or may not contain an ACM. We number the grid cubes 0, 1, 2, ..., kmn-1 as shown in the diagram below. Each space station specification then consists of the following: the first line contains four positive integers n m k l, where n, m and k are as described above and l is the number of ACM's in the station. This is followed by a set of lines which specify the l grid locations of the ACM's. Each of these lines contain 10 integers (except possibly the last). Each space station is fully connected (i.e., an astronaut can move from one ACM to any other ACM in the station without leaving the station). Values of n = m = k = l = 0 terminate input. 

Output

For each problem instance, you should output one line of the form

The number of faces needing shielding is s.

Sample Input

2 2 1 3
0 1 3
3 3 3 26
0 1 2 3 4 5 6 7 8 9
10 11 12 14 15 16 17 18 19 20
21 22 23 24 25 26
0 0 0 0

Sample Output

The number of faces needing shielding is 14.
The number of faces needing shielding is 54.

Source

 

题目大意:给你一个正长方体,长宽高分别为n、m、k,这个长方体由n*m*k个1*1*1的小立方体组成,把这些小立方体编号为0-(n*m*k-1),再给l个编号,表示这些小立方体是存在的,否则就是不存在的。求最总整个图形的外表面积。

解题思路:首先想到,以其中一个存在的小立方体开始,往上下左右前后六个方向搜索,如果这个方向上有小方块,就转移到这个小方块上继续搜索,如果没有,则表面积+1,但是这个方法求出来的包含内表面积!!!于是采用反向思维,在这个立方体周围包一层不存在立方体(这里的不存在就是标记该位置单位立方体tab[i][j][k]=0,存在为1),然后再按上面的方法改成搜索“不存在的小立方体”,只搜索最外圈,那么我们得到的结果就是最外圈那些“不存在的小立方体”所构成的部分的内外表面积之和,它的内表面积就是我们要求的“存在的小立方体组成的物体”的外表面积了。而它的外表面积就是(n*m+m*k+n*k)*2,其实可以不用算,在搜索的时候如果是边界不用+1就行了。注意要用BFS,刚开始用DFS栈溢出了。

知识扩展:这题是标准的洪泛算法的题目,记得勘测油田的那道简单搜索题吗?还有某些画图软件上的把图像上相连的某种颜色换成其他的,你点一块其他全部变化啦。这些都是洪泛算法的应用。本题意思是有一个由单位立方体组成的长方体,有些单位立方体内有宇航员,而外太空的毒气可以渗入没有贴防护膜的房间,所以要在某些必要的位置贴防护膜来防止毒气进入太空站空间。

相关链接:维基百科——洪泛算法:http://zh.wikipedia.org/zh-cn/Flood_fill

图像处理之泛洪填充算法(Flood Fill Algorithm) :http://blog.csdn.net/jia20003/article/details/8908464

洪泛算法讲解:http://www.nocow.cn/index.php/Flood_Fill

 #include<iostream>
#include<string.h>
#include<queue>
using namespace std;
int n,m,k,l;
bool tab[][][],visit[][][];
int face_num;
class W3{
public:
int x,y,z;
W3& set(int xx,int yy,int zz){
x=xx;y=yy;z=zz;
return *this;
}
};
void bfs(){
face_num=;
queue<W3> Q;
W3 temp;
Q.push(temp.set(,,));
while(!Q.empty()){
W3 Top=Q.front();Q.pop();
if(visit[Top.x][Top.y][Top.z])continue;
visit[Top.x][Top.y][Top.z]=;
if(Top.x->=){
if(tab[Top.x-][Top.y][Top.z]==){
if(!visit[Top.x-][Top.y][Top.z])Q.push(temp.set(Top.x-,Top.y,Top.z));
}
else face_num++;
}//左走一格
if(Top.x<=n){
if(tab[Top.x+][Top.y][Top.z]==){
if(!visit[Top.x+][Top.y][Top.z])Q.push(temp.set(Top.x+,Top.y,Top.z));
}
else face_num++;
}//右走一格
if(Top.y->=){
if(tab[Top.x][Top.y-][Top.z]==){
if(!visit[Top.x][Top.y-][Top.z])Q.push(temp.set(Top.x,Top.y-,Top.z));
}
else face_num++;
}//后走一格
if(Top.y<=m){
if(tab[Top.x][Top.y+][Top.z]==){
if(!visit[Top.x][Top.y+][Top.z])Q.push(temp.set(Top.x,Top.y+,Top.z));
}
else face_num++;
}//前走一格
if(Top.z->=){
if(tab[Top.x][Top.y][Top.z-]==){
if(!visit[Top.x][Top.y][Top.z-])Q.push(temp.set(Top.x,Top.y,Top.z-));
}
else face_num++;
}//下走一格
if(Top.z<=k){
if(tab[Top.x][Top.y][Top.z+]==){
if(!visit[Top.x][Top.y][Top.z+])Q.push(temp.set(Top.x,Top.y,Top.z+));
}
else face_num++;
}//上走一格
}
}
int main(){
while(cin>>n>>m>>k>>l){
if(!n && !m && !k && !l)break;
memset(tab,,sizeof(tab));
memset(visit,,sizeof(visit));
int temp1;
for(int i=;i<l;i++){
cin>>temp1;
tab[temp1%(m*n)%n+][temp1%(m*n)/n+][temp1/(n*m)+]=;
}//输入数据并转换为tab[][][]的3维矩阵(这里从1,1,1开始,最外层相当于无人方块)
bfs();
cout<<"The number of faces needing shielding is "<<face_num<<".\n";
}return ;
}

[ACM_搜索] POJ 1096 Space Station Shielding (搜索 + 洪泛算法Flood_Fill)的更多相关文章

  1. poj 2031 Building a Space Station【最小生成树prime】【模板题】

    Building a Space Station Time Limit: 1000MS   Memory Limit: 30000K Total Submissions: 5699   Accepte ...

  2. (最小生成树) Building a Space Station -- POJ -- 2031

    链接: http://poj.org/problem?id=2031 Time Limit: 1000MS   Memory Limit: 30000K Total Submissions: 6011 ...

  3. POJ 3126 Prime Path 广度优先搜索 难度:0

    http://poj.org/problem?id=3126 搜索的时候注意 1:首位不能有0 2:可以暂时有没有出现在目标数中的数字 #include <cstdio> #include ...

  4. POJ 2031 Building a Space Station【经典最小生成树】

    链接: http://poj.org/problem?id=2031 http://acm.hust.edu.cn/vjudge/contest/view.action?cid=22013#probl ...

  5. Building a Space Station POJ - 2031

    Building a Space Station POJ - 2031 You are a member of the space station engineering team, and are ...

  6. Building a Space Station POJ 2031 【最小生成树 prim】

    http://poj.org/problem?id=2031 Description You are a member of the space station engineering team, a ...

  7. POJ 2031 Building a Space Station

    3维空间中的最小生成树....好久没碰关于图的东西了.....              Building a Space Station Time Limit: 1000MS   Memory Li ...

  8. POJ 2031 Building a Space Station (最小生成树)

    Building a Space Station Time Limit: 1000MS   Memory Limit: 30000K Total Submissions: 5173   Accepte ...

  9. POJ 2031 Building a Space Station (最小生成树)

    Building a Space Station 题目链接: http://acm.hust.edu.cn/vjudge/contest/124434#problem/C Description Yo ...

随机推荐

  1. spark streaming 实战

    最近在学习spark的相关知识, 重点在看spark streaming 和spark mllib相关的内容. 关于spark的配置: http://www.powerxing.com/spark-q ...

  2. hibernate学习(设计多对多 关系 映射)

    // package org.crazy.app.domain; import java.util.HashSet; import java.util.Set; import javax.persis ...

  3. JAVA通过HTTP访问:Post+Get方式(转)

    public class TestGetPost { /** * 向指定URL发送GET方法的请求 * @param url 发送请求的URL * @param param 请求参数,请求参数应该是n ...

  4. coursera 机器学习课程 GraphLab环境准备

    在网上看到coursera有机器学习的课程,正好再学习学习,温固一下,还有很多其他的课程也很好.收费的哟! 手机APP和网站收取的费用有差异,网站上要便宜一下,费用差的挺多的,果断在网站上支付了. 有 ...

  5. 基于Jquery-ui的自动补全

    1.添加CSS和JS引用 <script type="text/javascript" src="javascript/jquery-1.7.min.js" ...

  6. wpf中button的无边框实现

    设置button的样式为:Style="{StaticResource {x:Static ToolBar.ButtonStyleKey}}";即可

  7. 阿里云配置nginx+php+mysql

    #yum -y install php mysql mysql-server mysql-devel php-mysql php-cgi php-mbstring php-gd php-fastcgi ...

  8. uploadify 上传遇到跨域问题

    flash上传跨域,一般是加入crossdomain.xml 我用了别人的图片服务器,只能做此下策: //CURLFile 实现 $file = $_FILES['Filedata']['tmp_na ...

  9. C# 特殊处理使用方法

    1.时间处理 Model.PiDaiTime.ToString("yyyyMMdd") == "00010101" ? DateTime.Now.ToStrin ...

  10. MHA安装手记

    安装MHA服务器和客户端 # yum install perl-DBD-MySQL 在manager节点上: # yum install perl-DBD-MySQL # yum install pe ...