Spark Streaming实时计算框架介绍
随着大数据的发展,人们对大数据的处理要求也越来越高,原有的批处理框架MapReduce适合离线计算,却无法满足实时性要求较高的业务,如实时推荐、用户行为分析等。 Spark Streaming是建立在Spark上的实时计算框架,通过它提供的丰富的API、基于内存的高速执行引擎,用户可以结合流式、批处理和交互试查询应用。本文将详细介绍Spark Streaming实时计算框架的原理与特点、适用场景。
Spark Streaming实时计算框架
Spark是一个类似于MapReduce的分布式计算框架,其核心是弹性分布式数据集,提供了比MapReduce更丰富的模型,可以在快速在内存中对数据集进行多次迭代,以支持复杂的数据挖掘算法和图形计算算法。Spark Streaming是一种构建在Spark上的实时计算框架,它扩展了Spark处理大规模流式数据的能力。
Spark Streaming的优势在于:
- 能运行在100+的结点上,并达到秒级延迟。
- 使用基于内存的Spark作为执行引擎,具有高效和容错的特性。
- 能集成Spark的批处理和交互查询。
- 为实现复杂的算法提供和批处理类似的简单接口。
基于云梯Spark on Yarn的Spark Streaming总体架构如图1所示。其中Spark on Yarn的启动流程我的另外一篇文章(《程序员》2013年11月期刊《深入剖析阿里巴巴云梯Yarn集群》)有详细描述,这里不再赘述。Spark on Yarn启动后,由Spark AppMaster把Receiver作为一个Task提交给某一个Spark Executor;Receive启动后输入数据,生成数据块,然后通知Spark AppMaster;Spark AppMaster会根据数据块生成相应的Job,并把Job的Task提交给空闲Spark Executor 执行。图中蓝色的粗箭头显示被处理的数据流,输入数据流可以是磁盘、网络和HDFS等,输出可以是HDFS,数据库等。
图1 云梯Spark Streaming总体架构
Spark Streaming的基本原理是将输入数据流以时间片(秒级)为单位进行拆分,然后以类似批处理的方式处理每个时间片数据,其基本原理如图2所示。

图2 Spark Streaming基本原理图
首先,Spark Streaming把实时输入数据流以时间片Δt (如1秒)为单位切分成块。Spark Streaming会把每块数据作为一个RDD,并使用RDD操作处理每一小块数据。每个块都会生成一个Spark Job处理,最终结果也返回多块。
下面介绍Spark Streaming内部实现原理。
使用Spark Streaming编写的程序与编写Spark程序非常相似,在Spark程序中,主要通过操作RDD(Resilient Distributed Datasets弹性分布式数据集)提供的接口,如map、reduce、filter等,实现数据的批处理。而在Spark Streaming中,则通过操作DStream(表示数据流的RDD序列)提供的接口,这些接口和RDD提供的接口类似。图3和图4展示了由Spark Streaming程序到Spark jobs的转换图。

图3 Spark Streaming程序转换为DStream Graph

图4 DStream Graph转换为Spark jobs
在图3中,Spark Streaming把程序中对DStream的操作转换为DStream Graph,图4中,对于每个时间片,DStream Graph都会产生一个RDD Graph;针对每个输出操作(如print、foreach等),Spark Streaming都会创建一个Spark action;对于每个Spark action,Spark Streaming都会产生一个相应的Spark job,并交给JobManager。JobManager中维护着一个Jobs队列, Spark job存储在这个队列中,JobManager把Spark job提交给Spark Scheduler,Spark Scheduler负责调度Task到相应的Spark Executor上执行。
Spark Streaming的另一大优势在于其容错性,RDD会记住创建自己的操作,每一批输入数据都会在内存中备份,如果由于某个结点故障导致该结点上的数据丢失,这时可以通过备份的数据在其它结点上重算得到最终的结果。
正如Spark Streaming最初的目标一样,它通过丰富的API和基于内存的高速计算引擎让用户可以结合流式处理,批处理和交互查询等应用。因此Spark Streaming适合一些需要历史数据和实时数据结合分析的应用场合。当然,对于实时性要求不是特别高的应用也能完全胜任。另外通过RDD的数据重用机制可以得到更高效的容错处理。
Spark Streaming实时计算框架介绍的更多相关文章
- 【Streaming】30分钟概览Spark Streaming 实时计算
本文主要介绍四个问题: 什么是Spark Streaming实时计算? Spark实时计算原理流程是什么? Spark 2.X下一代实时计算框架Structured Streaming Spark S ...
- Dream_Spark-----Spark 定制版:005~贯通Spark Streaming流计算框架的运行源码
Spark 定制版:005~贯通Spark Streaming流计算框架的运行源码 本讲内容: a. 在线动态计算分类最热门商品案例回顾与演示 b. 基于案例贯通Spark Streaming的运 ...
- Spark练习之通过Spark Streaming实时计算wordcount程序
Spark练习之通过Spark Streaming实时计算wordcount程序 Java版本 Scala版本 pom.xml Java版本 import org.apache.spark.Spark ...
- 【转】Spark Streaming 实时计算在甜橙金融监控系统中的应用及优化
系统架构介绍 整个实时监控系统的架构是先由 Flume 收集服务器产生的日志 Log 和前端埋点数据, 然后实时把这些信息发送到 Kafka 分布式发布订阅消息系统,接着由 Spark Streami ...
- 基于案例贯通 Spark Streaming 流计算框架的运行源码
本期内容 : Spark Streaming+Spark SQL案例展示 基于案例贯穿Spark Streaming的运行源码 一. 案例代码阐述 : 在线动态计算电商中不同类别中最热门的商品排名,例 ...
- 5.Spark Streaming流计算框架的运行流程源码分析2
1 spark streaming 程序代码实例 代码如下: object OnlineTheTop3ItemForEachCategory2DB { def main(args: Array[Str ...
- 贯通Spark Streaming流计算框架的运行源码
本章节内容: 一.在线动态计算分类最热门商品案例回顾 二.基于案例贯通Spark Streaming的运行源码 先看代码(源码场景:用户.用户的商品.商品的点击量排名,按商品.其点击量排名前三): p ...
- spark streaming 实时计算
spark streaming 开发实例 本文将分以下几部分 spark 开发环境配置 如何创建spark项目 编写streaming代码示例 如何调试 环境配置: spark 原生语言是scala, ...
- 大数据开发实战:Spark Streaming流计算开发
1.背景介绍 Storm以及离线数据平台的MapReduce和Hive构成了Hadoop生态对实时和离线数据处理的一套完整处理解决方案.除了此套解决方案之外,还有一种非常流行的而且完整的离线和 实时数 ...
随机推荐
- [UOJ#131][BZOJ4199][NOI2015]品酒大会 后缀数组 + 并查集
[UOJ#131][BZOJ4199][NOI2015]品酒大会 试题描述 一年一度的“幻影阁夏日品酒大会”隆重开幕了.大会包含品尝和趣味挑战两个环节,分别向优胜者颁发“首席品酒家”和“首席猎手”两个 ...
- Ubuntu上如何安装Java,Eclipse,Pydev,Python(自带,不用装),BeautifulSoup
如何安装Java,如果出于编程的需要安装Java,需要安装的是JDK,而不仅仅是JRE,下面说说如何在Ubuntu下如何安装JDK:只有两步,1.下载并解压,2.配置环境变量1.下载并解压:下载地址: ...
- 利用nginx泛域名解析配置二级域名和多域名
利用nginx泛域名解析配置二级域名和多域名 网站的目录结构为 html ├── bbs └── www html为nginx的安装目录下默认的存放源代码的路径. bbs为论坛程序源代码路径 www为 ...
- JavaScript Math 对象方法
Math 对象方法 方法 描述 abs(x) 返回数的绝对值. acos(x) 返回数的反余弦值. asin(x) 返回数的反正弦值. atan(x) 以介于 -PI/2 与 PI/2 弧度之间的数值 ...
- 47. 数组中出现次数超过一半的数字[Number appears more than half times]
[题目]:数组中有一个数字出现的次数超过了数组长度的一半,找出这个数字. 例如长度为9的数组{1,2,3,2,2,2,5,4,2}中次数超过了数组长度的一半的数字为2,而长度为8的数组{1,2,3,2 ...
- Java for LeetCode 032 Longest Valid Parentheses
Given a string containing just the characters '(' and ')', find the length of the longest valid (wel ...
- @RequestBody, @ResponseBody 注解详解
简介: @RequestBody 作用: i) 该注解用于读取Request请求的body部分数据,使用系统默认配置的HttpMessageConverter进行解析,然后把相应的数据绑定到要返回的对 ...
- fedora yum 使用代理的方法
配置yum: 编辑/etc/yum.conf添加下列一行: proxy=http://domain/user:passwd@<proxy ip>:80 <proxy ip>:代 ...
- Linux查询网址
1.man查询手册 LINUX MAN PAGES ONLINE: http://man.he.net/ 2.编码规范 https://www.kernel.org/doc/Documentation ...
- c++ 复习内容
. ]) { sizeof(str)=? } :// 函数行参仅是一个指针 . Typedef struct s* tPs; tPs p3,p4;//相等 struct s*p3,struct s*p ...