ZOJ1654 Place the Robots(二分图最大匹配)
最大匹配也叫最大边独立集,就是无向图中能取出两两不相邻的边的最大集合。
二分图最大匹配可以用最大流来解。
如果题目没有墙,那就是一道经典的二分图最大匹配问题:
把地图上的行和列分别作为点的X部和Y部,地图上每一块空地看作边,边的两个端点就是它所在的x行y列。这样,求最大边独立集即可。
而这一题有墙,然后我不会了。。
其实这题的建模也是一样的,也是行和列作为点,空地作为边:
- 对于每一行把被墙分隔的每一块连通的区域缩成一点,列也一样;
- 行缩成的点作为X部,列Y部;
- 某行连通区域最多就只能在区域内某一块空地放机器人,列也是一样;
- 如果某行连通区域和某列连通区域相交,就连边。
#include<cstdio>
#include<cstring>
#include<queue>
#include<algorithm>
using namespace std;
#define INF (1<<30)
#define MAXN 2555
#define MAXM 555555 struct Edge{
int v,cap,flow,next;
}edge[MAXM];
int vs,vt,NE,NV;
int head[MAXN]; void addEdge(int u,int v,int cap){
edge[NE].v=v; edge[NE].cap=cap; edge[NE].flow=;
edge[NE].next=head[u]; head[u]=NE++;
edge[NE].v=u; edge[NE].cap=; edge[NE].flow=;
edge[NE].next=head[v]; head[v]=NE++;
} int level[MAXN];
int gap[MAXN];
void bfs(){
memset(level,-,sizeof(level));
memset(gap,,sizeof(gap));
level[vt]=;
gap[level[vt]]++;
queue<int> que;
que.push(vt);
while(!que.empty()){
int u=que.front(); que.pop();
for(int i=head[u]; i!=-; i=edge[i].next){
int v=edge[i].v;
if(level[v]!=-) continue;
level[v]=level[u]+;
gap[level[v]]++;
que.push(v);
}
}
} int pre[MAXN];
int cur[MAXN];
int ISAP(){
bfs();
memset(pre,-,sizeof(pre));
memcpy(cur,head,sizeof(head));
int u=pre[vs]=vs,flow=,aug=INF;
gap[]=NV;
while(level[vs]<NV){
bool flag=false;
for(int &i=cur[u]; i!=-; i=edge[i].next){
int v=edge[i].v;
if(edge[i].cap!=edge[i].flow && level[u]==level[v]+){
flag=true;
pre[v]=u;
u=v;
//aug=(aug==-1?edge[i].cap:min(aug,edge[i].cap));
aug=min(aug,edge[i].cap-edge[i].flow);
if(v==vt){
flow+=aug;
for(u=pre[v]; v!=vs; v=u,u=pre[u]){
edge[cur[u]].flow+=aug;
edge[cur[u]^].flow-=aug;
}
//aug=-1;
aug=INF;
}
break;
}
}
if(flag) continue;
int minlevel=NV;
for(int i=head[u]; i!=-; i=edge[i].next){
int v=edge[i].v;
if(edge[i].cap!=edge[i].flow && level[v]<minlevel){
minlevel=level[v];
cur[u]=i;
}
}
if(--gap[level[u]]==) break;
level[u]=minlevel+;
gap[level[u]]++;
u=pre[u];
}
return flow;
} char map[][];
int main(){
int t,n,m;
scanf("%d",&t);
for(int cse=; cse<=t; ++cse){
scanf("%d%d",&n,&m);
for(int i=; i<n; ++i){
for(int j=; j<m; ++j) scanf(" %c",&map[i][j]);
} int d0[][]={},d1[][]={},cnt=;
int rown=,coln=;
for(int i=; i<n; ++i){
for(int j=; j<m; ){
if(map[i][j]=='o'){
++rown;
while(j<m && map[i][j]!='#') d0[i][j]=rown,++j;
}else ++j;
}
}
for(int j=; j<m; ++j){
for(int i=; i<n; ){
if(map[i][j]=='o'){
++coln;
while(i<n && map[i][j]!='#') d1[i][j]=coln+rown,++i;
}else ++i;
}
} vs=; vt=rown+coln+; NV=vt+; NE=;
memset(head,-,sizeof(head));
for(int i=; i<=rown; ++i) addEdge(vs,i,);
for(int i=; i<=coln; ++i) addEdge(i+rown,vt,);
for(int i=; i<n; ++i){
for(int j=; j<m; ++j){
if(map[i][j]=='o' && d0[i][j] && d1[i][j]) addEdge(d0[i][j],d1[i][j],);
}
} printf("Case :%d\n",cse);
printf("%d\n",ISAP());
}
return ;
}
ZOJ1654 Place the Robots(二分图最大匹配)的更多相关文章
- zoj1654 Place the Robots 二分图最大匹配
题目链接:http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemId=654 将每一行的包含空地的区域编号 再将每一列的包含空地的区域编号 然 ...
- POJ 2226二分图最大匹配
匈牙利算法是由匈牙利数学家Edmonds于1965年提出,因而得名.匈牙利算法是基于Hall定理中充分性证明的思想,它是二部图匹配最常见的算法,该算法的核心就是寻找增广路径,它是一种用增广路径求二分图 ...
- POJ2239 Selecting Courses(二分图最大匹配)
题目链接 N节课,每节课在一个星期中的某一节,求最多能选几节课 好吧,想了半天没想出来,最后看了题解是二分图最大匹配,好弱 建图: 每节课 与 时间有一条边 #include <iostream ...
- poj 2239 二分图最大匹配,基础题
1.poj 2239 Selecting Courses 二分图最大匹配问题 2.总结:看到一个题解,直接用三维数组做的,很巧妙,很暴力.. 题意:N种课,给出时间,每种课在星期几的第几节课上 ...
- UESTC 919 SOUND OF DESTINY --二分图最大匹配+匈牙利算法
二分图最大匹配的匈牙利算法模板题. 由题目易知,需求二分图的最大匹配数,采取匈牙利算法,并采用邻接表来存储边,用邻接矩阵会超时,因为邻接表复杂度O(nm),而邻接矩阵最坏情况下复杂度可达O(n^3). ...
- 二分图最大匹配的König定理及其证明
二分图最大匹配的K?nig定理及其证明 本文将是这一系列里最短的一篇,因为我只打算把K?nig定理证了,其它的废话一概没有. 以下五个问题我可能会在以后的文章里说,如果你现在很想知道的话,网上 ...
- POJ3057 Evacuation(二分图最大匹配)
人作X部:把门按时间拆点,作Y部:如果某人能在某个时间到达某门则连边.就是个二分图最大匹配. 时间可以二分枚举,或者直接从1枚举时间然后加新边在原来的基础上进行增广. 谨记:时间是个不可忽视的维度. ...
- HDU:过山车(二分图最大匹配)
http://acm.hdu.edu.cn/showproblem.php?pid=2063 题意:有m个男,n个女,和 k 条边,求有多少对男女可以搭配. 思路:裸的二分图最大匹配,匈牙利算法. 枚 ...
- UOJ #78 二分图最大匹配
#78. 二分图最大匹配 从前一个和谐的班级,有 nl 个是男生,有 nr 个是女生.编号分别为 1,…,nl 和 1,…,nr. 有若干个这样的条件:第 v 个男生和第 u 个女生愿意结为配偶. 请 ...
随机推荐
- 存在使i > j || i <= j不成立的数吗?
存在使i > j || i <= j不成立的数吗? 咋一看有点晕!一个数既不能大于也不能小于等于另一个数?那是什么数?答案是”非数“ 例子如下:‘ if(Double.NaN>Flo ...
- django-cms 代码研究(四)CMS_TEMPLATE标签
CMS_TEMPLATE 继承这个东东可以在实现很灵活的布局,如下:
- 常州Day4题解
1. 高精度 这题略水,字符串可过,还不加压位等,操作只有BitShift和add/sub,不过编程复杂度有些高.(输出都是二进制我能说些什么...) 2. N皇后问题 (警告! 不是平时你见到的N皇 ...
- 海量数据导入MySQL的注意事项
对于千万行级别的数据,处理起来非常麻烦,例如有一个文件a.txt,大小超过2GB,共2000多万行,每行是一个新闻的相关信息,其中有一列为新闻标题,字符串型,新闻标题较长,现需要对新闻标题进行聚类,将 ...
- Objective-C中的instancetype和id区别
目录(?)[-] 有一个相同两个不同相同 Written by Mattt Thompson on Dec 10th 2012 一什么是instancetype 二关联返回类型related resu ...
- 学习jquery mobile
学习jquery mobile的时间不是很长,在学习的过程当中也遇到了很多令人抓狂的问题,在网上搜索问题答案的时候发现,现在关于jquery mobile的文章还不是很多,所以,我也是一边学习,一边摸 ...
- 解决ntp的错误 no server suitable for synchronization found
当用ntpdate -d 来查询时会发现导致 no server suitable for synchronization found 的错误的信息有以下2个: 错误1.Server dropped: ...
- java 实现二分查找法
/** * 二分查找又称折半查找,它是一种效率较高的查找方法. [二分查找要求]:1.必须采用顺序存储结构 2.必须按关键字大小有序排列. * @author Administrator * */ p ...
- Junit4测试
1.junit初级入门 2.常用注解 3.运行流程 4.测试套件使用 5.参数化设置
- net发送邮件
对于.NET而言,从2.0开始,发邮件已经是一件非常easy 的事了.下面我给出一个用C#群发邮件的实例,做了比较详细的注解,希望对有需要的朋友有所help.看了这篇BLOG,如果你还不会用.NET发 ...