聪明的修路方案

  题目大意:就是农夫要修一条路,现在要求这条路要么就是上升的,要么就是下降的,总代价为∑|a[i]-b[i]|,求代价最低的修路方案, (0 ≤ β≤ 1,000,000,000) , (1 ≤ N ≤ 2,000)

  这一题百分百就是DP了,为什么?我们现在就是要让cost最小,但是我们不知道cost应该怎么才能最小。

  我们可以这么想,因为序列总是上升或者下降的,我们可以考虑上升的情况,假设前几个数组成的最大值为β,我们要考虑从0-β的改变值,然后不断推到第n个序列。

  显然,这样的复杂度为0(Nβ^2),当然这样的复杂度显然是出事的。  

  现在我们想着优化这个东西,我们可以这么想,如果我们像之前那样扫描的话,那么其实我们忽略了一个很重要的事实,就是在变到α(α<β),其实对于α+1~β之内不会对α造成影响,于是我们可以用一个最小值的临时变量储存在α之前的最小值,用这个更新dp即可,那样就少了一次扫β的复杂度

  复杂度变为O(Nβ);

  但是如果仅仅是这样的话,绝对是TLE,因为β实在是太大了。

  那么我们就要用到离散化的思想,把β投影到有限区域中,既然β是大小的函数,那么我们把可以这样对应:我们只用把新的序列按从小到大排列,然后只对下标进行查找就可以了,这样我们就把解的空间变到下标中了。

   最后状态转移方程:dp[i-1][j]=ABS(a[i]-b[j])+min(dp[i-1][j]);(用滚动数组就可以了)

  另外这一题还有一个更快的解法,那就是用左式堆去解,这个我晚一点开一个新的随笔写好了

  

 #include <iostream>
#include <functional>
#include <algorithm>
#define ABS(a,b) (a-b) > 0 ? (a-b):(b-a) using namespace std; static int road[];
static int new_road[];
static long long dp1[];
static long long dp2[]; int fcmop1(const void *a, const void *b)
{
return *(int *)a - *(int *)b;
}
int fcmop2(const void *a, const void *b)
{
return *(int *)b - *(int *)a;
} long long Search_Increase(const int);
long long Search_Decrease(const int); int main(void)
{
int n;
long long ans1, ans2;
while (~scanf("%d", &n))
{
for (int i = ; i < n; i++)
{
scanf("%d", &road[i]);
new_road[i] = road[i];
}
qsort(new_road, n, sizeof(int), fcmop1);
ans1 = Search_Increase(n);
printf("%lld", ans1);
/*
这题有问题,只用求不下降序列就可以了,如果求不上升序列会出错
qsort(new_road, n, sizeof(int), fcmop2);
ans2 = Search_Decrease(n);
printf("%lld\n", min(ans1, ans2));
*/
} return ;
} long long Search_Increase(const int n)
{
memset(dp1, , sizeof(dp1));
memset(dp2, , sizeof(dp2)); long long min_tmp, *dp_tmp = NULL, *p1 = dp1, *p2 = dp2, ans; for (int i = ; i < n; i++)
{
min_tmp = p1[];
for (int j = ; j < n; j++)
{
min_tmp = min(min_tmp, p1[j]);
p2[j] = (ABS(road[i], new_road[j])) + min_tmp;
}
dp_tmp = p1; p1 = p2; p2 = dp_tmp;
}
ans = p1[];
for (int i = ; i < n; i++)
ans = min(ans, p1[i]);
return ans;
} long long Search_Decrease(const int n)
{
memset(dp1, , sizeof(dp1));
memset(dp2, , sizeof(dp2)); long long min_tmp, *dp_tmp = NULL, *p1 = dp1, *p2 = dp2, ans; for (int i = ; i < n; i++)
{
min_tmp = p1[];
for (int j = ; j < n; j++)
{
min_tmp = min(min_tmp, p1[j]);
p2[j] = ABS(road[i], new_road[j]) + min_tmp;
}
dp_tmp = p1; p1 = p2; p2 = dp_tmp;
}
ans = p1[];
for (int i = ; i < n; i++)
ans = min(ans, p1[i]);
return ans;
}

  另外这一题有BUG,那就是只用找不下降序列就可以了,两个都找会出错。。。。。

  

    

DP:Making the Grade(POJ 3666)的更多相关文章

  1. S - Making the Grade POJ - 3666 结论 将严格递减转化成非严格的

    S - Making the Grade POJ - 3666 这个题目要求把一个给定的序列变成递增或者递减序列的最小代价. 这个是一个dp,对于这个dp的定义我觉得不是很好想,如果第一次碰到的话. ...

  2. A-Making the Grade(POJ 3666)

    Making the Grade Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 4656   Accepted: 2206 ...

  3. Making the Grade POJ - 3666

    A straight dirt road connects two fields on FJ's farm, but it changes elevation more than FJ would l ...

  4. Poj 3666 Making the Grade (排序+dp)

    题目链接: Poj 3666 Making the Grade 题目描述: 给出一组数,每个数代表当前位置的地面高度,问把路径修成非递增或者非递减,需要花费的最小代价? 解题思路: 对于修好的路径的每 ...

  5. 「POJ 3666」Making the Grade 题解(两种做法)

    0前言 感谢yxy童鞋的dp及暴力做法! 1 算法标签 优先队列.dp动态规划+滚动数组优化 2 题目难度 提高/提高+ CF rating:2300 3 题面 「POJ 3666」Making th ...

  6. 把一个序列转换成非严格递增序列的最小花费 POJ 3666

    //把一个序列转换成非严格递增序列的最小花费 POJ 3666 //dp[i][j]:把第i个数转成第j小的数,最小花费 #include <iostream> #include < ...

  7. POJ - 3666 Making the Grade(dp+离散化)

    Description A straight dirt road connects two fields on FJ's farm, but it changes elevation more tha ...

  8. POJ 3666 Making the Grade(数列变成非降序/非升序数组的最小代价,dp)

    传送门: http://poj.org/problem?id=3666 Making the Grade Time Limit: 1000MS   Memory Limit: 65536K Total ...

  9. POJ 3666 Making the Grade(二维DP)

    题目链接:http://poj.org/problem?id=3666 题目大意:给出长度为n的整数数列,每次可以将一个数加1或者减1,最少要多少次可以将其变成单调不降或者单调不增(题目BUG,只能求 ...

随机推荐

  1. Cocos2d-X3.0 刨根问底(三)----- Director类源码分析

    上一章我们完整的跟了一遍HelloWorld的源码,了解了Cocos2d-x的启动流程.其中Director这个类贯穿了整个Application程序,这章随小鱼一起把这个类分析透彻. 小鱼的阅读源码 ...

  2. tomcat7登录账户配置

    tomcat7和tomcat6的用户信息配置有些不一样,tomcat7中添加了manager=gui和admin-gui角色,配置参考如下: 再 tomcat 文件夹的conf文件夹中的 tomcat ...

  3. ubuntu 14.04 vim install youcompleteme

    sudo apt-get install vim ; sudo apt-get install vim-youcompleteme ; sudo apt-get install vim-addon-m ...

  4. Swift开发学习-01 Swift介绍

    本教程是笔者在自学IOS/Swift知识的总结,适用于通过对Objictive C编程的运用并需要了解基于iOS程序的iPhone和iPad的程序员.做一个有bigger的’攻城狮‘,有尊严的工作,快 ...

  5. display & visibility区别

    http://www.cnblogs.com/zhangran/archive/2012/08/29/2662459.html 说明:在学习css的过程中由于其中包含太多的元素.属性等等,总有许多是自 ...

  6. js中数组以及for循环的使用

    <meta http-equiv="Content-Type" content="text/html; charset=utf-8" /> < ...

  7. java中request,application,session三个域及参数简单示例

    直接上代码: java代码: public class HelloAction implements Action { @Override public String execute() throws ...

  8. 让Windows 7内置Administrator 用户也能使用指纹登录

    前言 这周末重装了个系统,之前用windows 8 现在8.1预览版出来了,琢磨着是不是给升级玩玩.装上后感觉变化不大,后来一折腾,就换回windows 7 了(64位旗舰版).将安装时创建的用户删除 ...

  9. php中文字符串翻转

    转自:http://www.oschina.net/code/snippet_613962_17070 <?php header("content-type:text/html;cha ...

  10. Linux下/proc目录简介

    文章转载至:http://blog.csdn.net/zdwzzu2006/article/details/7747977 1. /proc目录Linux 内核提供了一种通过 /proc 文件系统,在 ...