Problem Description
In mathematics and computer science, an algorithm describes a set of procedures or instructions that define a procedure. The term has become increasing popular since the advent of cheap and reliable computers. Many companies now employ a single coder to write an algorithm that will replace many other employees. An added benefit to the employer is that the coder will also become redundant once their work is done.   1
You are now the signle coder, and have been assigned a new task writing code, since your boss would like to replace many other employees (and you when you become redundant once your task is complete).

Your code should be able to complete a task to replace these employees who do nothing all day but eating: make the digest sum.

By saying “digest sum” we study some properties of data. For the sake of simplicity, our data is a set of integers. Your code should give response to following operations:

1. add x – add the element x to the set;

2. del x – remove the element x from the set;

3. sum – find the digest sum of the set. The digest sum should be understood by

where the set S is written as {a
1, a
2, ... , a
k} satisfying a
1
 < a
2
 < a
3
 < ... < a
k
 

Can you complete this task (and be then fired)?

------------------------------------------------------------------------------


1
 See http://uncyclopedia.wikia.com/wiki/Algorithm

 
Input
There’re several test cases.

In each test case, the first line contains one integer N ( 1 <= N <= 10
5
 ), the number of operations to process.

Then following is n lines, each one containing one of three operations: “add x” or “del x” or “sum”.

You may assume that 1 <= x <= 10
9.

Please see the sample for detailed format.

For any “add x” it is guaranteed that x is not currently in the set just before this operation.

For any “del x” it is guaranteed that x must currently be in the set just before this operation.

Please process until EOF (End Of File).

 
Output
For each operation “sum” please print one line containing exactly one integer denoting the digest sum of the current set. Print 0 if the set is empty.

 
Sample Input
9
add 1
add 2
add 3
add 4
add 5
sum
add 6
del 3
sum
6
add 1
add 3
add 5
add 7
add 9
sum
 
Sample Output
3
4
5

Hint

C++ maybe run faster than G++ in this problem.

思路:这道题很明显是线段树的单点更新区间求和的问题,因为要求的是对5取余为3的所有数的和,我们可以将对5取余的5种情况进行离散化,而且这道题暴力也能过,不过时间几乎是踩线的。

先来暴力代码,这是老板大神的做法,真心碉堡了,暴力的精华在于要保持数组的有序性,只是时间比较长

#include <stdio.h>
#include <string.h>
#include <algorithm>
using namespace std; int n;
int a[100005],len;
char str[10];
__int64 sum; int main()
{
int i,j,k;
while(~scanf("%d",&n))
{
len = 0;
while(n--)
{
scanf("%s",str);
if(!strcmp(str,"add"))
{
scanf("%d",&k);
for(i = len++; i>0; i--)//保持有序的插入
{
if(a[i-1]>k)
a[i] = a[i-1];
else
break;
}
a[i] = k;
}
else if(!strcmp(str,"del"))
{
scanf("%d",&k);
for(i = 0; i<len; i++)//找到删除的位置
if(a[i] == k)
break;
for(; i<len; i++)//删除后后面的数前移
a[i] = a[i+1];
len--;
}
else if(!strcmp(str,"sum"))
{
sum = 0;
for(i = 2; i<len; i+=5)//所有队伍取余为3的和加起来
sum+=a[i];
printf("%I64d\n",sum);
}
}
} return 0;
}

然后是线段树的,时间方面大大减少了

#include <stdio.h>
#include <string.h>
#include <algorithm>
using namespace std; const int maxn = 500000+10; int n,len,flag;
char str[maxn][10];
int num[maxn],s[maxn]; struct node
{
int l,r,cnt;
__int64 sum[5];//sum[i]保存与5模的各组和
} a[maxn<<2]; int bin(int k)
{
int l = 0,r = len-1;
while(l<=r)
{
int mid = (l+r)>>1;
if(s[mid]<k)
l = mid+1;
else if(s[mid]>k)
r = mid-1;
else
return mid;
}
} void init(int l,int r,int i)
{
a[i].l = l;
a[i].r = r;
a[i].cnt = 0;
memset(a[i].sum,0,sizeof(a[i].sum));
if(l!=r)
{
int mid = (l+r)>>1;
init(l,mid,2*i);
init(mid+1,r,2*i+1);
}
} void add(int x)
{
for(int i = 0; i<5; i++)
a[x].sum[i] = a[x*2].sum[i]+a[x*2+1].sum[((i-a[x*2].cnt)%5+5)%5];//这个区间的和是左右子树同样余数的相加和,右子树要用序号减去左子树的个数对5取模后为了保持正数所以要+5再取模,所以是(i-a[x*2].cnt)%5+5
} void insert(int i,int pos,int m)
{
a[i].cnt+=2*flag-1;//区间内有几个数字
if(a[i].l == a[i].r)
{
a[i].sum[0] = flag*m;//删除则此位清0,add则进行更新
return;
}
int mid = (a[i].l+a[i].r)>>1;
if(pos<=mid)
insert(2*i,pos,m);
else
insert(2*i+1,pos,m);
add(i);
} int main()
{
int i,pos;
while(~scanf("%d",&n))
{
len = 0;
for(i = 0; i<n; i++)
{
scanf("%s",str[i]);
if(str[i][0] != 's')
{
scanf("%d",&num[i]);
s[len++] = num[i];
}
}
sort(s,s+len);
len = unique(s,s+len)-s;//去重
if(!len)
memset(a[1].sum,0,sizeof(a[1].sum));
else
init(1,len,1);
for(i = 0; i<n; i++)
{
if(str[i][0] == 'a')
{
flag = 1;
pos = bin(num[i]);
insert(1,pos,num[i]);
}
else if(str[i][0] == 'd')
{
flag = 0;
int pos = bin(num[i]);
insert(1,pos,num[i]);
}
else
printf("%I64d\n",a[1].sum[2]);
}
} return 0;
}

HDU4288:Coder(线段树单点更新版 && 暴力版)的更多相关文章

  1. HDU 1394 逆序数 线段树单点跟新 | 暴力

    Minimum Inversion Number Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java ...

  2. HDU4288 Coder(线段树)

    注意添加到集合中的数是升序的,先将数据读入,再离散化. sum[rt][i]表示此节点的区域位置对5取模为i的数的和,删除一个数则右边的数循环左移一位,添加一个数则右边数循环右移一位,相当于循环左移4 ...

  3. POJ 1804 Brainman(5种解法,好题,【暴力】,【归并排序】,【线段树单点更新】,【树状数组】,【平衡树】)

    Brainman Time Limit: 1000MS   Memory Limit: 30000K Total Submissions: 10575   Accepted: 5489 Descrip ...

  4. HDU 1754 I Hate It 线段树单点更新求最大值

    题目链接 线段树入门题,线段树单点更新求最大值问题. #include <iostream> #include <cstdio> #include <cmath> ...

  5. HDU 1754 I Hate It(线段树单点替换+区间最值)

    I Hate It [题目链接]I Hate It [题目类型]线段树单点替换+区间最值 &题意: 本题目包含多组测试,请处理到文件结束. 在每个测试的第一行,有两个正整数 N 和 M ( 0 ...

  6. HDU 1166 敌兵布阵(线段树单点更新)

    敌兵布阵 单点更新和区间更新还是有一些区别的,应该注意! [题目链接]敌兵布阵 [题目类型]线段树单点更新 &题意: 第一行一个整数T,表示有T组数据. 每组数据第一行一个正整数N(N< ...

  7. poj 2892---Tunnel Warfare(线段树单点更新、区间合并)

    题目链接 Description During the War of Resistance Against Japan, tunnel warfare was carried out extensiv ...

  8. HDU 1754 线段树 单点跟新 HDU 1166 敌兵布阵 线段树 区间求和

    I Hate It Time Limit: 9000/3000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) Total ...

  9. HDU 1166 敌兵布阵(线段树单点更新,板子题)

    敌兵布阵 Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others) Total Submi ...

随机推荐

  1. 【转】深入理解TextView实现Rich Text--在同一个TextView设置不同字体风格

    深入理解TextView实现Rich Text--在同一个TextView设置不同字体风格 作者: 字体:[增加 减小] 类型:转载   本篇文章是对Android中在同一个TextView中设置不同 ...

  2. sell - 配置service

    1. 2. 注意value!

  3. oracle 中的游标

    oracle 中的游标 通俗易懂的sql代码直接上! --简单的游标使用滴呀 --使用FOR OBJ IN OBJS LOOP ......END LOOP; DECLARE CURSOR C_JOB ...

  4. Android各个版本 版本号对应关系表

    Platform Version API Level VERSION_CODE Notes Android 5.0 21 LOLLIPOP Platform Highlights Android 4. ...

  5. 安装nodejs+ionic+cordova环境心得

    1.安装node-v0.10.38-x64.msi版本(从nodejs中下载最稳定版本,最后安装ionic安不上,然后又安装node-v0.10.38-x64.msi,再安装ionicok了.不知道是 ...

  6. [RGEOS]绘制多边形Polygon

    绘制OGIS定义的Polygon public void DrawPolygon(Polygon pol, Brush brush, Pen pen, bool clip) { gc = Graphi ...

  7. jquery实现input输入框实时输入触发事件代码

    <input id="productName" name="productName" class="wid10" type=" ...

  8. PostgreSQL Replication之第十章 配置Slony(6)

    10.6 执行故障切换 一旦您学会了如何复制表并将它们添加到集合中,是时候学习故障转移了.基本上,我们可以在两个两种类型的故障转移之间做出区分: • 计划内故障转移 • 计划外故障转移和崩溃 在本节, ...

  9. UI design principles

    Master's conclusion: 1. fix a color pattern 2. fix the frames the UI will use 3. fix the subject tha ...

  10. bzoj 4237稻草人

    按x轴进行分治,将[l,r]分成[l,mid]和[mid+1,r],左下角点x值在[l,mid]中,右上角点x值在[mid+1,r],然后将[l,r]中的所有点按y轴排序,按顺序扫描,若扫描到左下角点 ...