99 Lisp Problems 列表处理(P1~P28)
L-99: Ninety-Nine Lisp Problems
列表处理类问题的解答,用Scheme实现,首先定义几个在后续解题中用到的公共过程:
; common procedure
(define (check-element xs f)
(call/cc (lambda (break)
(for-each (lambda (x) (if (f x) (break #t))) xs)
#f)))
(define (foldl f init xs)
(define (iter xs acc)
(if (null? xs) acc
(iter (cdr xs) (f acc (car xs)))))
(iter xs init))
(define (foldr f init xs)
(define (iter xs acc)
(if (null? xs) acc
(iter (cdr xs) (f (car xs) acc))))
(iter (reverse xs) init))
(define (rep x n)
(define (iter result acc)
(if (= n acc) result
(iter (cons x result) (+ acc 1))))
(iter '() 0))
(define (swapf xs f)
(cond [(null? xs) '()]
[(not (pair? xs)) '()]
[(not (= (length xs) 2)) '()]
[else (list (f (car (cdr xs))) (f (car xs)))]))
(define (element-at xs at)
(define (iter xs acc)
(cond [(null? xs) "idx out of range"]
[(= acc at) (car xs)]
[else (iter (cdr xs) (+ acc 1))]))
(iter xs 0))
P04 (*) Find the number of elements of a list.
(define (find xs x)
(if (check-element xs (lambda (e) (= e x))) x
(cons "can not find " x)))
P05 (*) Reverse a list.
(define (my-reverse xs) (foldl (lambda (acc x) (cons x acc)) '() xs))
P06 (*) Find out whether a list is a palindrome.
A palindrome can be read forward or backward; e.g. (x a m a x).
(define (palindrome xs) (equal? xs (my-reverse xs)))
P07 (**) Flatten a nested list structure.
Transform a list, possibly holding lists as elements into a `flat' list
by replacing each list with its elements (recursively).
Example:
(my-flatten '(a (b (c d) e)))
(A B C D E)
Hint: Use the predefined functions list and append.
(define (my-flatten xs)
(if (pair? xs) (foldr (lambda (x acc) (append (my-flatten x) acc)) '() xs)
(list xs)))
P08 (**) Eliminate consecutive duplicates of list elements.
If a list contains repeated elements they should be replaced with a single copy
of the element. The order of the elements should not be changed.
Example:
(compress '(a a a a b c c a a d e e e e))
(A B C A D E)
(define (compress xs)
(reverse (foldl (lambda (acc x) (if (or (null? acc) (not (eq? (car acc) x))) (cons x acc) acc)) '() xs)))
P09 (**) Pack consecutive duplicates of list elements into sublists.
If a list contains repeated elements they should be placed in separate sublists.
Example:
(pack '(a a a a b c c a a d e e e e))
((A A A A) (B) (C C) (A A) (D) (E E E E))
(define (pack xs)
(reverse (car (cdr (foldl (lambda (acc x)
(let ([fst (car acc)] ;记录前一个处理值
[snd (cadr acc)]) ;分组
(if (eq? fst x)
(let ([h (car snd)];当前正在处理的分组
[t (cdr snd)])
(list x (cons (cons x h) t))) ;x与前一个处理值一样,将x添加进当前分组即可
(list x (cons (list x) snd))))) ;x与前一个处理值不一样,创建一个新的x分组
'(#f ()) xs)))))
P10 (*) Run-length encoding of a list.
Use the result of problem P09 to implement the so-called run-length encoding data compression method.
Consecutive duplicates of elements are encoded as lists (N E) where N is the number of duplicates of the element E.
Example:
(encode '(a a a a b c c a a d e e e e))
((4 A) (1 B) (2 C) (2 A) (1 D)(4 E))
(define (encode xs)
(let ([p (pack xs)])
(foldr (lambda (x acc) (cons (list (length x) (car x)) acc)) '() p)))
P11 (*) Modified run-length encoding.
Modify the result of problem P10 in such a way that if an element has no duplicates it is simply copied
into the result list. Only elements with duplicates are transferred as (N E) lists.
Example:
(encode-modified '(a a a a b c c a a d e e e e))
((4 A) B (2 C) (2 A) D (4 E))
(define (encode-modified xs)
(let ([p (pack xs)])
(foldr (lambda (x acc)
(let ([size (length x)])
(if (> size 1) (cons (list (length x) (car x)) acc)
(cons (car x) acc)))) '() p)))
P12 (**) Decode a run-length encoded list.
Given a run-length code list generated as specified in problem P11. Construct its uncompressed version.
(define (decode xs)
(foldr (lambda (x acc)
(if (pair? x) (append (rep (cadr x) (car x)) acc)
(append (list x) acc))) '() xs))
P13 (**) Run-length encoding of a list (direct solution).
与P11类似,不过不允许直接使用P9的结果
Implement the so-called run-length encoding data compression method directly.
I.e. don't explicitly create the sublists containing the duplicates, as in problem P09,
but only count them. As in problem P11, simplify the result list by replacing the singleton lists (1 X) by X.
Example:
(encode-direct '(a a a a b c c a a d e e e e))
((4 A) B (2 C) (2 A) D (4 E))
(define (encode-direct xs)
(reverse (car (cdr (foldl (lambda (acc x)
(let ([fst (car acc)] ;记录前一个处理值
[snd (cadr acc)]) ;分组
(if (eq? fst x)
(let ([h (car snd)];当前正在处理的分组
[t (cdr snd)])
(if (pair? h) (list x (cons (list (+ (car h) 1) x) t))
(list x (cons (cons 2 (list x)) t))))
(list x (cons x snd))))) ;x与前一个处理值不一样,创建一个新的x分组
'(#f ()) xs)))))
P14 (*) Duplicate the elements of a list.
Example:
(dupli '(a b c c d))
(A A B B C C C C D D)
(define (dupli xs)
(foldr (lambda (x acc) (append (rep x 2) acc)) '() xs))
P15 (**) Replicate the elements of a list a given number of times.
Example:
(repli '(a b c) 3)
(A A A B B B C C C)
(define (repli xs n)
(foldr (lambda (x acc) (append (rep x n) acc)) '() xs))
P16 (**) Drop every N'th element from a list.
Example:
(drop '(a b c d e f g h i k) 3)
(A B D E G H K)
(define (drop xs n)
(reverse (car (cdr (foldl (lambda (acc x)
(let ([fst (car acc)]
[snd (car (cdr acc))])
(if (= (mod fst n) 0) (list (+ fst 1) snd)
(list (+ fst 1) (cons x snd))))) '(1 ()) xs)))))
P17 (*) Split a list into two parts; the length of the first part is given.
Do not use any predefined predicates.
Example:
(split '(a b c d e f g h i k) 3)
( (A B C) (D E F G H I K))
(define (split xs n)
(swapf (car (cdr (foldl (lambda (acc x)
(let ([fst (car acc)]
[snd (cadr acc)])
(if (or (= fst 0) (= fst n)) ;开辟新的组
(list (+ fst 1) (cons (list x) snd))
;插入原组
(let ([h (car snd)];当前正在处理的分组
[t (cdr snd)])
(list (+ fst 1) (cons (cons x h) t)))))) '(0 ()) xs)))
reverse))
P18 (**) Extract a slice from a list.
Given two indices, I and K, the slice is the list containing the elements between
the I'th and K'th element of the original list (both limits included). Start counting the elements with 1.
Example:
(slice '(a b c d e f g h i k) 3 7)
(C D E F G)
(define (slice xs n1 n2)
(reverse (car (cdr (foldl (lambda (acc x)
(let ([fst (car acc)]
[snd (car (cdr acc))])
(if (and (>= fst n1) (<= fst n2)) (list (+ fst 1) (cons x snd))
(list (+ fst 1) snd)))) '(1 ()) xs)))))
P19 (**) Rotate a list N places to the left.
Examples:
(rotate '(a b c d e f g h) 3)
(D E F G H A B C)
(rotate '(a b c d e f g h) -2)
(G H A B C D E F)
Hint: Use the predefined functions length and append, as well as the result of problem P17.
(define (rotate xs n)
(let ([s (if (> n 0) n (+ (length xs) n))])
(my-flatten (swapf (split xs s) (lambda (x) x)))))
P20 (*) Remove the K'th element from a list.
Example:
(remove-at '(a b c d) 2)
(A C D)
(define (remove-at xs n)
(reverse (car (cdr (foldl (lambda (acc x)
(let ([fst (car acc)]
[snd (car (cdr acc))])
(if (= fst n) (list (+ fst 1) snd)
(list (+ fst 1) (cons x snd))))) '(1 ()) xs)))))
P21 (*) Insert an element at a given position into a list.
Example:
(insert-at 'alfa '(a b c d) 2)
(A ALFA B C D)
(define (insert-at e xs n)
(reverse (car (cdr (foldl (lambda (acc x)
(let ([fst (car acc)]
[snd (car (cdr acc))])
(if (= fst n) (list (+ fst 1) (cons x (cons e snd)))
(list (+ fst 1) (cons x snd))))) '(1 ()) xs)))))
P22 (*) Create a list containing all integers within a given range.
If first argument is smaller than second, produce a list in decreasing order.
Example:
(range 4 9)
(4 5 6 7 8 9)
(define (range b e)
(define (iter acc result)
(if (< acc b) result
(iter (- acc 1) (cons acc result))))
(iter e '()))
P23 (**) Extract a given number of randomly selected elements from a list.
The selected items shall be returned in a list.
Example:
(rnd-select '(a b c d e f g h) 3)
(E D A)
(define (rnd-select xs n)
(define (iter acc result num)
(if (or (null? num) (>= 0 acc)) result
(let ([i (+ (random (length num)) 1)])
(iter (- acc 1) (cons (element-at num i) result) (remove-at num i)))))
(iter n '() xs))
P24 (*) Lotto: Draw N different random numbers from the set 1..M.
The selected numbers shall be returned in a list.
Example:
(lotto-select 6 49)
(23 1 17 33 21 37)
(define (lotto-select n num)
(rnd-select (range 1 num) n))
P25 (*) Generate a random permutation of the elements of a list.
Example:
(rnd-permu '(a b c d e f))
(B A D C E F)
Hint: Use the solution of problem P23.
(define (rnd-permu xs)
(rnd-select xs (length xs)))
P26 (**) Generate the combinations of K distinct objects chosen from the N elements of a list
In how many ways can a committee of 3 be chosen from a group of 12 people? We all know that there
are C(12,3) = 220 possibilities (C(N,K) denotes the well-known binomial coefficients). For pure
mathematicians, this result may be great. But we want to really generate all the possibilities in a list.
;组合
(define (combination xs n)
(cond [(or (null? xs) (< (length xs) n))'()]
[(= n 1) (foldr (lambda (x acc) (cons (list x) acc)) '() xs)]
[else (append (foldr (lambda (x acc) (cons (cons (car xs) x) acc))
'() (combination (cdr xs) (- n 1))) ;取当前(car xs) + (cdr xs)中取n-1个
(combination (cdr xs) n))]));从(cdr xs)中取n个
;(length (combination '(1 2 3 4 5 6 7 8 9 10 11 12) 3))
;排列
(define (permutation xs n)
(cond [(or (null? xs) (< (length xs) n))'()]
[(= n 1) (foldr (lambda (x acc) (cons (list x) acc)) '() xs)]
[else (let* ([permutation-n-1 (permutation (cdr xs) (- n 1))];(cdr xs)取n-1的排列
[head (car xs)]
[permutation-swap (foldl (lambda (acc x) ;将head与arrange-n-1中的元素互换
(append (foldl (lambda (acc1 xx)
(append (foldl (lambda (acc2 xxx) (cons (cons (element-at x xx) xxx) acc2)) '() (list (replace x head xx))) acc1))
'() (range 1 (length x))) acc)) '() permutation-n-1)])
(append (append (foldl (lambda (acc x) (cons (cons head x) acc)) '() permutation-n-1) permutation-swap) (permutation (cdr xs) n)))]))
P27 (**) Group the elements of a set into disjoint subsets.
a) In how many ways can a group of 9 people work in 3 disjoint subgroups of 2, 3 and 4
persons? Write a function that generates all the possibilities and returns them in a list.
Example:
(group3 '(aldo beat carla david evi flip gary hugo ida))
( ( (ALDO BEAT) (CARLA DAVID EVI) (FLIP GARY HUGO IDA) )
... )
b) Generalize the above predicate in a way that we can specify a list of group sizes and the
predicate will return a list of groups.
Example:
(group '(aldo beat carla david evi flip gary hugo ida) '(2 2 5))
( ( (ALDO BEAT) (CARLA DAVID) (EVI FLIP GARY HUGO IDA) )
... )
Note that we do not want permutations of the group members; i.e. ((ALDO BEAT) ...) is
the same solution as ((BEAT ALDO) ...). However, we make a difference between ((ALDO BEAT) (CARLA DAVID) ...)
and ((CARLA DAVID) (ALDO BEAT) ...).
You may find more about this combinatorial problem in a good book on discrete mathematics under the term "multinomial coefficients".
(define (group xs g)
(define (tail xs) (car (reverse xs)))
;输入xs和n,输出((xs取n的组合1,剩余元素1) (xs取n的组合2,剩余元素2) ...)
(define (half-group xs n)
;输出差集
(define (diffset xs xs1)
(foldr (lambda (x acc)
(if (not (check-element xs1 (lambda (xx) (eq? x xx))))
(cons x acc) acc)) '() xs))
(let ([c (combination xs n)])
(foldr (lambda (x acc)
(cons (list x (diffset xs x)) acc)) '() c)))
(if (and (not (null? g)) (not (= (length xs) (car g))))
(let* ([half (half-group xs (car g))])
(foldr (lambda (x acc)
(let ([t (group (tail x) (cdr g))])
(append (foldr (lambda (x1 acc1)
(let ([xx (if (= (length g) 1) (list x1) x1)])
(cons (cons (car x) xx) acc1))) '() t) acc))) '() half))
(if (and (not (null? g)) (= (length xs) (car g))) (list (list xs)) (list xs))))
P28 (**) Sorting a list of lists according to length of sublists
a) We suppose that a list contains elements that are lists themselves.
The objective is to sort the elements of this list according to their length. E.g. short lists first, longer lists later, or vice versa.
Example:
(lsort '((a b c) (d e) (f g h) (d e) (i j k l) (m n) (o)))
((O) (D E) (D E) (M N) (A B C) (F G H) (I J K L))
b) Again, we suppose that a list contains elements that are lists themselves.
But this time the objective is to sort the elements of this list according to their length frequency;
i.e., in the default, where sorting is done ascendingly, lists with rare lengths are placed first, others with a
more frequent length come later.
Example:
(lfsort '((a b c) (d e) (f g h) (d e) (i j k l) (m n) (o)))
((i j k l) (o) (a b c) (f g h) (d e) (d e) (m n))
Note that in the above example, the first two lists in the result have length 4 and 1,
both lengths appear just once. The third and forth list have length 3 which appears twice
(there are two list of this length). And finally, the last three lists have length 2. This is the most frequent length.
quick sort
(define (qsort l greater)
(if (not (pair? l)) '()
(let ([m (car l)]
[partition (foldr (lambda (x acc)
(let ([small (car acc)]
[large (cadr acc)])
(if (greater x m) (list small (cons x large))
(list (cons x small) large))))
'(()()) (cdr l))])
(append (qsort (car partition) greater)
(cons m (qsort (cadr partition) greater))))))
a)
(define (lsort xs) (qsort xs (lambda (l r) (> (length l) (length r)))))
b)
(define (lfsort xs)
(define (statistics xs)
(foldr (lambda (x acc) (cons (length x) acc)) '() xs))
(define (get-frequent ftable l)
(if (= (cadar ftable) (length l)) (caar ftable)
(get-frequent (cdr ftable) l)))
(let ([ftable (encode (qsort (statistics xs) (lambda (l r) (> l r))))])
(qsort xs (lambda (l r) (> (get-frequent ftable l) (get-frequent ftable r))))))
99 Lisp Problems 列表处理(P1~P28)的更多相关文章
- 99 Lisp Problems 二叉树(P54~P69)
P54A (*) Check whether a given term represents a binary tree Write a predicate istree which returns ...
- 第1章列表处理——1.1 Lisp列表
Lisp是啥? Lots of Isolated Silly Parentheses (大量分离的愚蠢的括号) Lisp指的是"LISt Processing"(列表处理),通过把 ...
- Python之列表生成式、生成器、可迭代对象与迭代器
本节内容 语法糖的概念 列表生成式 生成器(Generator) 可迭代对象(Iterable) 迭代器(Iterator) Iterable.Iterator与Generator之间的关系 一.语法 ...
- 给Lisp程序员的Python简介
给Lisp程序员的Python简介 作者:Peter Norvig,译者:jineslong<zzljlu@gmail.com> 这是一篇为Lisp程序员写的Python简介(一些Pyth ...
- Python的列表
1. Python的列表简介 1. 1 列表的定义 列表是Python中最基本的数据结构,列表是最常用的Python数据类型,列表的数据项不需要具有相同的类型.列表中的每个元素都分配一个数字 ,即它的 ...
- 4.5Python数据类型(5)之列表类型
返回总目录 目录: 1.列表的定义 2.列表的常规操作 3.列表的额外操作 (一)列表的定义: 列表的定义 [var1, var2, --, var n ] # (1)列表的定义 [var1, var ...
- 【转】Python之列表生成式、生成器、可迭代对象与迭代器
[转]Python之列表生成式.生成器.可迭代对象与迭代器 本节内容 语法糖的概念 列表生成式 生成器(Generator) 可迭代对象(Iterable) 迭代器(Iterator) Iterabl ...
- 学习python第四天 列表
模块的导入是使用 import sys#导入模块sysprint(sys.path)#打印环境变量,可能存在的目录print(sys.argv)#打印脚本的名字,相对路径 import os os.s ...
- 4,list,list的列表嵌套,range
list 索引,切片+步长 # li = [, True, (, , , , , , '小明',], {'name':'alex'}] #索引,切片,步长 # print(li[]) # print( ...
随机推荐
- linux SMP启动
SMP简介 1,硬件上,CPU没有主次之分 2,软件上,每个CPU平等动态地从进程就绪队列中调度进程加以执行,中断请求也是等概率动态的分布给某个CPU SMP启动 1,SMP结构中的CPU都是平等的, ...
- 【Leetcode】【Hard】Merge Intervals
Given a collection of intervals, merge all overlapping intervals. For example,Given [1,3],[2,6],[8,1 ...
- C#设计模式(22)——访问者模式(Vistor Pattern)
一.引言 在上一篇博文中分享了责任链模式,责任链模式主要应用在系统中的某些功能需要多个对象参与才能完成的场景.在这篇博文中,我将为大家分享我对访问者模式的理解. 二.访问者模式介绍 2.1 访问者模式 ...
- 解析ASP.NET WebForm和Mvc开发的区别
因为以前主要是做WebFrom开发,对MVC开发并没有太深入的了解.自从来到创新工场的新团队后,用的技术都是自己以前没有接触过的,比如:MVC 和EF还有就是WCF,压力一直很大.在很多问题都是不清楚 ...
- [公告]这里的博客将不再更新,最新博客请移步至blog.coderzh.com
公告:我的博客已迁移至独立博客:http://blog.coderzh.com/ 感谢大家支持!同时欢迎关注我的微信公众号:hacker-thinking <---- 扫描左侧二维码关注
- javaweb学习总结(二十五)——jsp简单标签开发(一)
一.简单标签(SimpleTag) 由于传统标签使用三个标签接口来完成不同的功能,显得过于繁琐,不利于标签技术的推广, SUN公司为降低标签技术的学习难度,在JSP 2.0中定义了一个更为简单.便于编 ...
- PowerManager和WakeLock的操作步骤
① PowerManager pm = (PowerManager) getSystemService(Context.POWER_SERVICE);通过 Context.getSystemServ ...
- 解决android SwipeRefreshLayout recyclerview 不能下拉
http://stackoverflow.com/questions/25178329/recyclerview-and-swiperefreshlayout 23down vote write th ...
- 安卓开发, 遇到WebView不能加载静态网页, WebView显示 "net::ERR_PROXY_CONNECTON_FAILED"
http://blog.csdn.net/zhouchangshi/article/details/44454695 Android开发中遇到网络连接问题, 要找WebView中显示一个静态的网页, ...
- KVM 基础使用(一)
Host OS:CentOS release 6.3 (Final) x64 安装时选择Virtual Host 1.测试KVM有没有启动 运行 lsmod | grep kvm 和 stat /de ...