POJ  3261

Description

Farmer John has noticed that the quality of milk given by his cows varies from day to day. On further investigation, he discovered that although he can't predict the quality of milk from one day to the next, there are some regular patterns in the daily milk quality.

To perform a rigorous study, he has invented a complex classification scheme by which each milk sample is recorded as an integer between 0 and 1,000,000 inclusive, and has recorded data from a single cow over N (1 ≤ N ≤ 20,000) days. He wishes to find the longest pattern of samples which repeats identically at least K (2 ≤ K ≤ N) times. This may include overlapping patterns -- 1 2 3 2 3 2 3 1 repeats 2 3 2 3 twice, for example.

Help Farmer John by finding the longest repeating subsequence in the sequence of samples. It is guaranteed that at least one subsequence is repeated at least K times.

Input

Line 1: Two space-separated integers: N and K
Lines 2.. N+1: N integers, one per line, the quality of the milk on day i appears on the ith line.

Output

Line 1: One integer, the length of the longest pattern which occurs at least K times

Sample Input

8 2
1
2
3
2
3
2
3
1

Sample Output

4

题意: 给了N和K,接下来有N个数输入,N<=20000,每个数小于1000,000,求一个最长的子串,这个子串在这个串中至少出现K次,K>=2,保证至少存在一个串符合;

思路:我们可以通过二分子串的长度len来做,这时就将题目变成了是否存在重复次数至少为K次且长度不小len的字符串。首先我们可以把相邻的所有不小于len的height[]看成一组,这组内有多少个字符串,就相当于有多少个长度至少为len的重复的子串。之所以可以这么做,是因为排名第i的字符串和排名第j的字符串的最长公共前缀等于height[i],height[i+1],...,height[j]中的最小值,所以把所有不小于len的height[]看成一组就保证了组内任意两个字符串的最长公共前缀都至少为k,且长度为k的前缀是每个字符串共有的,因此这组内有多少个字符串,就相当于有多少个长度至少为k的重复的子串(任意一个子串都是某个后缀的前缀);
#include <iostream>
#include <algorithm>
#include <cstdio>
#include <cstring>
#include <map>
#define rep(i,n) for(int i = 0;i < n; i++)
using namespace std;
const int size=,INF=<<;
int rk[size],sa[size],height[size],w[size],wa[size],res[size];
int N,K;
void getSa (int len,int up) {
int *k = rk,*id = height,*r = res, *cnt = wa;
rep(i,up) cnt[i] = ;
rep(i,len) cnt[k[i] = w[i]]++;
rep(i,up) cnt[i+] += cnt[i];
for(int i = len - ; i >= ; i--) {
sa[--cnt[k[i]]] = i;
}
int d = ,p = ;
while(p < len){
for(int i = len - d; i < len; i++) id[p++] = i;
rep(i,len) if(sa[i] >= d) id[p++] = sa[i] - d;
rep(i,len) r[i] = k[id[i]];
rep(i,up) cnt[i] = ;
rep(i,len) cnt[r[i]]++;
rep(i,up) cnt[i+] += cnt[i];
for(int i = len - ; i >= ; i--) {
sa[--cnt[r[i]]] = id[i];
}
swap(k,r);
p = ;
k[sa[]] = p++;
rep(i,len-) {
if(sa[i]+d < len && sa[i+]+d <len &&r[sa[i]] == r[sa[i+]]&& r[sa[i]+d] == r[sa[i+]+d])
k[sa[i+]] = p - ;
else k[sa[i+]] = p++;
}
if(p >= len) return ;
d *= ,up = p, p = ;
}
} void getHeight(int len) {
rep(i,len) rk[sa[i]] = i;
height[] = ;
for(int i = ,p = ; i < len - ; i++) {
int j = sa[rk[i]-];
while(i+p < len&& j+p < len&& w[i+p] == w[j+p]) {
p++;
}
height[rk[i]] = p;
p = max(,p - );
}
} int getSuffix(int s[]) {
int len =N,up = ;
for(int i = ; i < len; i++) {
w[i] = s[i];
up = max(up,w[i]);
}
w[len++] = ;
getSa(len,up+);
getHeight(len);
return len;
}
void solve()///二分;
{
int i,j,k,cnt,ans,mid,min,max;
min=,max=N;
for(;;)
{
mid = (max + min) / ;
if(mid==min)
break;
ans=cnt=;
for(i=;i<=N;i++)
{///计算连续的height[];
if(height[i]<mid)
{
if(cnt>ans)
ans=cnt;
cnt=;
}
else
{
if(!cnt)
cnt=;
else
++cnt;
}
}
if(cnt > ans)
ans = cnt;
if(ans >= K)
min = mid;
else
max = mid;
}
printf("%d\n", mid);
}
map<int,int>q;
int main()
{
int s[size],a[size];
while(scanf("%d%d",&N,&K)!=EOF)
{
for(int i=;i<N;i++)
{
scanf("%d",&s[i]);
a[i]=s[i];
}
sort(a,a+N);
int pre=,tot=;///离散化处理;
for(int i=;i<N;i++)
{
if(a[i]==pre)
{
a[i]=tot;
q[pre]=tot;
}
else
{
pre=a[i];
a[i]=++tot;
q[pre]=tot;
}
}
for(int i=;i<N;i++)
{
s[i]=q[s[i]];
}
getSuffix(s);
solve();
}
}

后缀数组---Milk Patterns的更多相关文章

  1. BZOJ 1717: [Usaco2006 Dec]Milk Patterns 产奶的模式 [后缀数组]

    1717: [Usaco2006 Dec]Milk Patterns 产奶的模式 Time Limit: 5 Sec  Memory Limit: 64 MBSubmit: 1017  Solved: ...

  2. 【BZOJ-1717】Milk Patterns产奶的模式 后缀数组

    1717: [Usaco2006 Dec]Milk Patterns 产奶的模式 Time Limit: 5 Sec  Memory Limit: 64 MBSubmit: 881  Solved:  ...

  3. POJ 3261 Milk Patterns (求可重叠的k次最长重复子串)+后缀数组模板

    Milk Patterns Time Limit: 5000MS   Memory Limit: 65536K Total Submissions: 7586   Accepted: 3448 Cas ...

  4. poj 3261 Milk Patterns(后缀数组)(k次的最长重复子串)

    Milk Patterns Time Limit: 5000MS   Memory Limit: 65536K Total Submissions: 7938   Accepted: 3598 Cas ...

  5. BZOJ 1717: [Usaco2006 Dec]Milk Patterns 产奶的模式( 二分答案 + 后缀数组 )

    二分答案m, 后缀数组求出height数组后分组来判断. ------------------------------------------------------------ #include&l ...

  6. BZOJ_1717_[Usaco2006 Dec]Milk Patterns 产奶的模式_后缀数组

    BZOJ_1717_[Usaco2006 Dec]Milk Patterns 产奶的模式_后缀数组 Description 农夫John发现他的奶牛产奶的质量一直在变动.经过细致的调查,他发现:虽然他 ...

  7. [USACO06FEC]Milk Patterns --- 后缀数组

    [USACO06FEC]Milk Patterns 题目描述: Farmer John has noticed that the quality of milk given by his cows v ...

  8. [bzoj1717][Usaco2006 Dec]Milk Patterns 产奶的模式_后缀数组_二分答案

    Milk Patterns 产奶的模式 bzoj-1717 Usaco-2006 Dec 题目大意:给定一个字符串,求最长的至少出现了$k$次的子串长度. 注释:$1\le n\le 2\cdot 1 ...

  9. Poj 3261 Milk Patterns(后缀数组+二分答案)

    Milk Patterns Case Time Limit: 2000MS Description Farmer John has noticed that the quality of milk g ...

随机推荐

  1. Windows Tomcat7.0 安装 Solr

    准备工作 1.下载Tomcat7.0 ,apache-tomcat-7.0.67.exe,安装目录如下:C:\workspace\Tomcat7.0\ 2.下载Solr 5.2,solr-5.2.0. ...

  2. worksteal thread pool

    worksteal的场景 对于一个线程池,每个线程有一个队列,想象这种场景,有的线程队列中有大量的比较耗时的任务堆积,而有的线程队列却是空的,现象就是有的线程处于饥饿状态,而有的线程处于消化不良的状态 ...

  3. Emit动态生成代码

    Emit动态生成代码 引用:秒懂C#通过Emit动态生成代码 首先需要声明一个程序集名称, // specify a new assembly name var assemblyName = new ...

  4. xcode 插件之KSImageNamed-Xcode

    https://github.com/ksuther/KSImageNamed-Xcode 好用,各位记得安装啊

  5. php 反射

    一.通过{属性名} 对对象赋值.        $book=new Book();        $propertyName="name";        $propertyVal ...

  6. 使用Doxygen生成net帮助文档

    一. 什么是Doxygen? Doxygen 是一个程序的文件产生工具,可将程序中的特定批注转换成为说明文件.通常我们在写程序时,或多或少都会写上批注,但是对于其它人而言,要直接探索程序里的批注,与打 ...

  7. google全球地址大全

    https://github.com/justjavac/Google-IPs http://www.aol.com/依托于google的一个搜索,通过这个搜索

  8. zk框架中利用map类型传值来创建window,并且传值

    @Command @NotifyChange("accList") public void clear(@BindingParam("id") String a ...

  9. wireshark如何抓取本机包

    在进行通信开发的过程中,我们往往会把本机既作为客户端又作为服务器端来调试代码,使得本机自己和自己通信.但是wireshark此时是无法抓取到数据包的,需要通过简单的设置才可以. 具体方法如下: 方法一 ...

  10. String详解, String和CharSequence区别, StringBuilder和StringBuffer的区别 (String系列之1)

    本章主要介绍String和CharSequence的区别,以及它们的API详细使用方法. 转载请注明出处:http://www.cnblogs.com/skywang12345/p/string01. ...