CodeForces 327C
Description
There is a long plate s containing n digits. Iahub wants to delete some digits (possibly none, but he is not allowed to delete all the digits) to form his "magic number" on the plate, a number that is divisible by 5. Note that, the resulting number may contain leading zeros.
Now Iahub wants to count the number of ways he can obtain magic number, modulo 1000000007 (109 + 7). Two ways are different, if the set of deleted positions in s differs.
Look at the input part of the statement, s is given in a special form.
Input
In the first line you're given a string a (1 ≤ |a| ≤ 105), containing digits only. In the second line you're given an integer k (1 ≤ k ≤ 109). The plate s is formed by concatenating k copies of a together. That is n = |a|·k.
Output
Print a single integer — the required number of ways modulo 1000000007 (109 + 7).
Sample Input
1256
1
4
13990
2
528
555
2
63
Hint
In the first case, there are four possible ways to make a number that is divisible by 5: 5, 15, 25 and 125.
In the second case, remember to concatenate the copies of a. The actual plate is 1399013990.
In the third case, except deleting all digits, any choice will do. Therefore there are 26 - 1 = 63 possible ways to delete digits.
题意:
告诉一个串,以及这个串的个数K,将这K个串连接起来,然后可以删除其中一些数字,但是不能全部删除,使得这个串表示的数能被5整除,可以存在包含前导零的情况,05 和 5是两个不同的数。问总共能有多少这种数。
思路:
能被5整除,那么要么是0 要么是5结尾,所以对于只有一个串的时候每次都找0 5结尾的数,它前面的可以选或者不选就是总共2^i种可能。当有多个串时,第2,3,4,。。。k个串中可能性就是第一个串中对应位置的 i+strlen(str), 第一个串中符合条件的2^i的和为tmp,那么k个串中符合条件的总和就是 tmp*(1+2^len+2^(2len)+ 2^(3len)....+2^(klen)),这是个等比数列求和问题,可以化成(1-2^(len*k))/ (1-2^(len)) %mod
假设 a=(1-2^(len*k))b=(1-2^(len)) 由于a很大,所以这个时候就要用到逆元来求(a/b)%mod
//2016.8.14
#include<iostream>
#include<cstdio>
#define ll long long using namespace std; const int mod = 1e9+; ll pow(ll a, ll b)//快速幂
{
ll ans = ;
while(b)
{
if(b&)ans *= a, ans %= mod;
a *= a, a %= mod;
b>>=;
}
return ans;
} int main()
{
string a;
int k;
ll ans = ;//ans = 2^i * ((i^kn)/(1-2^n))%mod
while(cin>>a>>k)
{
ans = ;
int n = a.size();
for(int i = ; i < n; i++)
if(a[i]==''||a[i]=='')
ans+=pow(, i);
ll y = pow(, n);
ll x = pow(y, k);
x = ((-x)%mod+mod)%mod;
y = ((-y)%mod+mod)%mod;
ans = ((ans%mod)*(x*pow(y, mod-)%mod))%mod;//利用费马小定理求y的逆元
cout<<ans<<endl;
} return ;
}
CodeForces 327C的更多相关文章
- (水题)Codeforces - 327C - Magic Five
https://codeforces.com/problemset/problem/327/C 因为答案可以有前导零,所以0和5一视同仁.每个小节内,以排在第 $i$ 个的5为结尾的序列即为在前面 $ ...
- CodeForces Round #191 (327C) - Magic Five 等比数列求和的快速幂取模
很久以前做过此类问题..就因为太久了..这题想了很久想不出..卡在推出等比的求和公式,有除法运算,无法快速幂取模... 看到了 http://blog.csdn.net/yangshuolll/art ...
- python爬虫学习(5) —— 扒一下codeforces题面
上一次我们拿学校的URP做了个小小的demo.... 其实我们还可以把每个学生的证件照爬下来做成一个证件照校花校草评比 另外也可以写一个物理实验自动选课... 但是出于多种原因,,还是绕开这些敏感话题 ...
- 【Codeforces 738D】Sea Battle(贪心)
http://codeforces.com/contest/738/problem/D Galya is playing one-dimensional Sea Battle on a 1 × n g ...
- 【Codeforces 738C】Road to Cinema
http://codeforces.com/contest/738/problem/C Vasya is currently at a car rental service, and he wants ...
- 【Codeforces 738A】Interview with Oleg
http://codeforces.com/contest/738/problem/A Polycarp has interviewed Oleg and has written the interv ...
- CodeForces - 662A Gambling Nim
http://codeforces.com/problemset/problem/662/A 题目大意: 给定n(n <= 500000)张卡片,每张卡片的两个面都写有数字,每个面都有0.5的概 ...
- CodeForces - 274B Zero Tree
http://codeforces.com/problemset/problem/274/B 题目大意: 给定你一颗树,每个点上有权值. 现在你每次取出这颗树的一颗子树(即点集和边集均是原图的子集的连 ...
- CodeForces - 261B Maxim and Restaurant
http://codeforces.com/problemset/problem/261/B 题目大意:给定n个数a1-an(n<=50,ai<=50),随机打乱后,记Si=a1+a2+a ...
随机推荐
- Java中的局部内部类
package Smoke; public class Inner { private int num = 3; class Limian{ public void show(){ //内部类可以访问 ...
- vs 2012svn 插件设置
- [iOS]C语言技术视频-03-程序分支结构(switch)
下载地址: 链接: http://pan.baidu.com/s/1iBpYA 密码: e2ym
- __bridge,__bridge_transfer和__bridge_retained的使用和区别【转载】
__bridge,__bridge_transfer和__bridge_retained的使用和区别[转载] Core Foundation 框架Core Foundation框架 (CoreFoun ...
- CentOS 6.4 x64 Cacti 监控安装配置
Cacti 监控安装配置 环境: 安装Cacti 的服务器 Linux 6.4 x64 ip 10.8.8.11 一: 配置iptables , selinux vi ...
- DNS架设准备+申请领域查询授权
1. 架设DNS服务器首先我们得安装一下的软件[root@bogon ~]# rpm -qa | grep ^bindbind-libs-9.8.2-0.37.rc1.el6.i686 <==给 ...
- PHP操作mysql类
<?php class Mysql{ //数据库连接句柄 private $link; //返回结果集 private $result; //返回查询数据 private $data; //执行 ...
- mysql管理---表分区
一.什么是表分区 通俗地讲表分区是将一大表,根据条件分割成若干个小表.mysql5.1开始支持数据表分区了. 如:某用户表的记录超过了600万条,那么就可以根据入库日期将表分区,也可以根据所在地将表分 ...
- 四、Hbase
一.什么情况下使用Hbase 例子: 这里Order By无时不刻的处理,我们要看到刚才的足迹,不能使用缓存技巧. 根据时间戳来查询,显然很快,应为Hbase就是以时间戳来存的. 将最近的数据放在内存 ...
- 无法访问 ASP 兼容性模式
<%@ Page Title="" Language="C#" MasterPageFile="../theme/classic/content ...