51、Spark Streaming之输入DStream和Receiver详解
输入DStream代表了来自数据源的输入数据流。在之前的wordcount例子中,lines就是一个输入DStream(JavaReceiverInputDStream),
代表了从netcat(nc)服务接收到的数据流。除了文件数据流之外,所有的输入DStream都会绑定一个Receiver对象,该对象是一个关键的组件,
用来从数据源接收数据,并将其存储在Spark的内存中,以供后续处理。 Spark Streaming提供了两种内置的数据源支持:
1、基础数据源:StreamingContext API中直接提供了对这些数据源的支持,比如文件、socket、Akka Actor等。
2、高级数据源:诸如Kafka、Flume、Kinesis、Twitter等数据源,通过第三方工具类提供支持。这些数据源的使用,需要引用其依赖。
3、自定义数据源:我们可以自己定义数据源,来决定如何接受和存储数据。 要注意的是,如果你想要在实时计算应用中并行接收多条数据流,可以创建多个输入DStream。这样就会创建多个Receiver,从而并行地接收多个数据流。
但是要注意的是,一个Spark Streaming Application的Executor,是一个长时间运行的任务,因此,它会独占分配给Spark Streaming Application的cpu core。
所以只要Spark Streaming运行起来以后,这个节点上的cpu core,就没法给其他应用使用了。 使用本地模式,运行程序时,绝对不能用local或者local[1],因为那样的话,只会给执行输入DStream的executor分配一个线程。而Spark Streaming底层的
原理是,至少要有两条线程,一条线程用来分配给Receiver接收数据,一条线程用来处理接收到的数据。因此必须使用local[n],n>=2的模式。 如果不设置Master,也就是直接将Spark Streaming应用提交到集群上运行,那么首先,必须要求集群节点上,有>1个cpu core,其次,给Spark Streaming的
每个executor分配的core,必须>1,这样,才能保证分配到executor上运行的输入DStream,两条线程并行,一条运行Receiver,接收数据;一条处理数据。
否则的话,只会接收数据,不会处理数据。 企业工作中,机器肯定是不只一个cpu core,这个问题应该不大。

所以说,集群的节点上,总共拥有的cpu core,首先,必须是大于Spark Streaming Application的Receiver数量,因为一个Receiver独占一个CPU core; 其次,在spark-submit脚本中,给Application分配的总的cpu core,肯定小于等于集群的cpu core的数量,大于Receiver的数量;
51、Spark Streaming之输入DStream和Receiver详解的更多相关文章
- 输入DStream和Receiver详解
输入DStream代表了来自数据源的输入数据流.在之前的wordcount例子中,lines就是一个输入DStream(JavaReceiverInputDStream),代表了从netcat(nc) ...
- StreamingContext详解,输入DStream和Reveiver详解
StreamingContext详解,输入DStream和Reveiver详解 一.StreamingContext详解 1.1两种创建StreamingContext的方式 1.2SteamingC ...
- 52、Spark Streaming之输入DStream之基础数据源以及基于HDFS的实时wordcount程序
一.概述 1.Socket:之前的wordcount例子,已经演示过了,StreamingContext.socketTextStream() 2.HDFS文件 基于HDFS文件的实时计算,其实就是, ...
- Spark Streaming初步使用以及工作原理详解
在大数据的各种框架中,hadoop无疑是大数据的主流,但是随着电商企业的发展,hadoop只适用于一些离线数据的处理,无法应对一些实时数据的处理分析,我们需要一些实时计算框架来分析数据.因此出现了很多 ...
- 64、Spark Streaming:StreamingContext初始化与Receiver启动原理剖析与源码分析
一.StreamingContext源码分析 ###入口 org.apache.spark.streaming/StreamingContext.scala /** * 在创建和完成StreamCon ...
- Spark Streaming源码解读之Receiver生成全生命周期彻底研究和思考
本期内容 : Receiver启动的方式设想 Receiver启动源码彻底分析 多个输入源输入启动,Receiver启动失败,只要我们的集群存在就希望Receiver启动成功,运行过程中基于每个Tea ...
- Spark Streaming之三:DStream解析
DStream 1.1基本说明 1.1.1 Duration Spark Streaming的时间类型,单位是毫秒: 生成方式如下: 1)new Duration(milli seconds) 输入毫 ...
- Spark RDD、DataFrame原理及操作详解
RDD是什么? RDD (resilientdistributed dataset),指的是一个只读的,可分区的分布式数据集,这个数据集的全部或部分可以缓存在内存中,在多次计算间重用. RDD内部可以 ...
- 输入一个url全过程详解
1. 用户在浏览器中输入url,浏览器接收到url. 2.浏览器接收到这个url之后,会根据这个url会先查看缓存,如果有缓存且没有过期的话直接提供给客户端,完成页面渲染. 3.否则浏览器就会通过DN ...
随机推荐
- Java之数据类型讲解
Java数据类型关系图 基本数据类型 从小到大的关系图: 图中从左向右的转换都是隐式转换,无需再代码中进行强制转换 : byte i = 12; System.out.println("by ...
- 2. matplotlib绘制散点图
与绘制直线图的唯一区别:plt.scatter # coding=utf-8 from matplotlib import pyplot as plt from matplotlib import f ...
- Nas 系统的虚拟化方案
Nas 系统的虚拟化方案 https://zhuanlan.zhihu.com/p/55025102 对搞技术的人来说,Nas 是个理想的玩具,既然是程序员用的 Nas ,自然要专业一点,不能像小白一 ...
- windows nvlddmkm、DRIVER_POWER_STATE_FAILURE 蓝屏问题的解决资料
背景与现象描述 博主在最近购买了 机械革命 Z2-R (MECHREVO Z2-R Series GK5CP02) 笔记本电脑后,几乎每天均有不下3次的蓝屏,而且机器热时,更甚,达到每天10次以上,简 ...
- 知识扩展——(转)一篇文章彻底弄懂Base64编码原理
在互联网中的每一刻,你可能都在享受着Base64带来的便捷,但对于Base64的基础原理又了解多少?今天这篇博文带领大家了解一下Base64的底层实现. 一.Base64的由来 目前Base64已经成 ...
- ningx配置本地https环境
由于项目改成了https访问,所以本地开发的时候也要通过https验证,避免页面发送http请求. 例如原来是这样访问:http://192.168.88.88:8080/ 或 http://loca ...
- Linux SSH 服务
本篇写一些关于Linux网络中SSH服务的相关知识. 测试环境 名称 IP地址 host01 192.168.28.128 host02 192.168.28.129 host03 192.168.2 ...
- tomcat下载地址
https://archive.apache.org/dist/tomcat/tomcat-6/v6.0.53/bin/ Index of /dist/tomcat/tomcat-6/v6.0.53 ...
- clipse调试web项目配置调试配置——没有Server
文章:eclipse环境下如何配置tomcat(包含没有Server解决办法) 地址:https://blog.csdn.net/TimliangL/article/details/78882566
- heapq 对有序的数组列表进行整体排序
""" 功能:实现对有序的多个数组整体排序,获取top k个最小元素 """ from heapq import * def heap_so ...