原文链接:https://developer.nvidia.com/ffmpeg

GPU-accelerated video processing integrated into the most popular open-source multimedia tools.

FFmpeg and libav are among the most popular open-source multimedia manipulation tools with a library of plugins that can be applied to various parts of the audio and video processing pipelines and have achieved
wide adoption across the world.

Video encoding, decoding and transcoding are some of the most popular applications of FFmpeg. Thanks to the support of the FFmpeg and libav community and contributions from NVIDIA engineers, both of these tools
now support native NVIDIA GPU hardware accelerated video encoding and decoding through the integration of the NVIDIA Video Codec SDK.

Leveraging FFmpeg’s Audio codec, stream muxing, and RTP protocols, the FFmpeg’s integration of NVIDIA Video Codec SDK enables high performance hardware accelerated video pipelines.

FFmpeg uses Video Codec SDK

If you have an NVIDIA GPU which supports hardware-accelerated video encoding and decoding, it’s simply a matter of compiling FFmpeg binary with the required support for NVIDIA libraries and using the resulting binaries
to speed up video encoding/decoding.

FFmpeg supports following functionality accelerated by video hardware on NVIDIA GPUs:

  • Hardware-accelerated encoding of H.264 and HEVC*
  • Hardware-accelerated decoding** of H.264, HEVC, VP9, VP8, MPEG2, and MPEG4*
  • Granular control over encoding settings such as encoding preset, rate control and other video quality parameters
  • Create high-performance end-to-end hardware-accelerated video processing, 1:N encoding and 1:N transcoding pipeline using built-in filters in FFmpeg
  • Ability to add your own custom high-performance CUDA filters using the shared CUDA context implementation in FFmpeg
  • Windows/Linux support

* Support is dependent on HW. For a full list of GPUs and formats supported, please see the available GPU
Support Matrix.
 

** HW decode support will be added to libav in the near future

Operating System Windows 7, 8, 10, and Linux
Dependencies NVENCODE API - NVIDIA Quadro, Tesla, GRID or GeForce products with Kepler, Maxwell
and Pascal generation GPUs. 

NVDECODE API - NVIDIA Quadro, Tesla, GRID or GeForce products with Fermi, Kepler,
Maxwell and Pascal generation GPUs. 

GPU Support Matrix 

Appropriate NVIDIA Display Driver 

DirectX SDK (Windows only) Optional: CUDA
toolkit 7.5
Development Environment Windows: Visual Studio 2010/2013/2015, MSYS/MinGW

Linux: gcc 4.8 or higher

FFmpeg GPU HW-Acceleration Support Table

  Fermi Kepler Maxwell (1st Gen) Maxwell (2nd Gen) Maxwell (GM206) Pascal
H.264 encoding N/A FFmpeg v3.3 FFmpeg v3.3 FFmpeg v3.3 FFmpeg v3.3 FFmpeg v3.3
HEVC encoding N/A N/A N/A FFmpeg v3.3 FFmpeg v3.3 FFmpeg v3.3
MPEG2, MPEG-4, H.264 decoding FFmpeg v3.3 FFmpeg v3.3 FFmpeg v3.3 FFmpeg v3.3 FFmpeg v3.3 FFmpeg v3.3
HEVC decoding N/A N/A N/A N/A FFmpeg v3.3 FFmpeg v3.3
VP9 decoding N/A N/A N/A FFmpeg v3.3 FFmpeg v3.3 FFmpeg v3.3

For guidelines about NVIDIA GPU-accelerated video encoding/decoding performance, please visit the Video
Codec SDK page
 for more details.

Getting Started with FFmpeg/libav using NVIDIA GPUs

Using NVIDIA hardware acceleration in FFmpeg/libav requires the following steps

  • Download the latest FFmpeg or libav source
    code, by cloning the corresponding GIT repositories
  • FFmpeg: https://git.FFmpeg.org/FFmpeg.git
  • Libav: https://github.com/libav/libav
  • Download and install the compatible driver from NVIDIA web site
  • Downoad and install the CUDA Toolkit CUDA toolkit
  • Use the following configure command (Use correct CUDA library path in config command below) 
    ./configure --enable-cuda --enable-cuvid --enable-nvenc --enable-nonfree
    --enable-libnpp 

    --extra-cflags=-I/usr/local/cuda/include --extra-ldflags=-L/usr/local/cuda/lib64
  • Use following command for build: make -j 10
  • Use FFmpeg/libav binary as required. To start with FFmpeg, try the below sample command line for 1:2 transcoding
    ffmpeg -y -hwaccel cuvid -c:v h264_cuvid -vsync 0 -i <input.mp4> –vf scale_npp=1920:1072

    -vcodec h264_nvenc <output0.264> -vf scale_npp=1280:720 -vcodec h264_nvenc <output1.264>

For more information on FFmpeg licensing, please see this page.

FFmpeg in Action

FFmpeg is used by many projects, including Google Chrome and VLC player. You can easily integrate NVIDIA hardware-acceleration to these applications by configuring FFmpeg to use NVIDIA GPUs for video encoding and decoding tasks.

HandBrake is an open-source video transcoder available for Linux,
Mac, and Windows.

HandBrake works with most common video files and formats, including ones created by consumer and professional video cameras, mobile devices such as phones and tablets, game and computer screen recordings, and DVD and Blu-ray discs. HandBrake leverages tools
such as Libav, x264, and x265 to create new MP4 or MKV video files from these.

Plex Media Server is a client-server media player system and software suite that runs on Windows, macOS, linux,
FreeBSD or a NAS. Plex organizes all of the videos, music, and photos from your computer’s personal media library and let you stream to your devices.

The Plex Transcoder uses FFmpeg to handle and translates your media into that the format your client device supports.

How to use FFmpeg/libav with NVIDIA GPU-acceleration

Decode a single H.264 to YUV

To decode a single H.264 encoded elementary bitstream file into YUV, use the following command:

FFMPEG: ffmpeg -vsync 0 -c:v h264_cuvid -i <input.mp4> -f rawvideo <output.yuv>

LIBAV: avconv -vsync 0 -c:v h264_cuvid -i <input.mp4> -f rawvideo <output.yuv>

Example applications:

  • Video analytics, video inferencing
  • Video post-processing
  • Video playback

Encode a single YUV file to a bitstream

To encode a single YUV file into an H.264/HEVC bitstream, use the following command:

H.264

FFMPEG: ffmpeg -f rawvideo -s:v 1920x1080 -r 30 -pix_fmt yuv420p -i <input.yuv>
-c:v h264_nvenc -preset slow -cq 10 -bf 2 -g 150 <output.mp4>

LIBAV: avconv -f rawvideo -s:v 1920x1080 -r 30 -pix_fmt yuv420p -i <input.yuv> -c:v h264_nvenc -preset slow -cq 10 -bf 2 -g 150 <output.mp4>
 

HEVC (No B-frames)

FFMPEG: ffmpeg -f rawvideo -s:v 1920x1080 -r 30 -pix_fmt yuv420p -i <input.yuv>
-vcodec hevc_nvenc -preset slow -cq 10 -g 150 <output.mp4>

LIBAV: avconv -f rawvideo -s:v 1920x1080 -r 30 -pix_fmt yuv420p -i <input.yuv> -vcodec hevc_nvenc -preset slow -cq 10 -g 150 <output.mp4>

Example applications:

  • Surveillance
  • Archiving footages from remote cameras
  • Archiving raw captured video from a single camera

Transcode a single video file

To do 1:1 transcode, use the following command:

FFMPEG: ffmpeg -hwaccel cuvid -c:v h264_cuvid -i <input.mp4> -vf scale_npp=1280:720
-c:v h264_nvenc <output.mp4>

LIBAV: avconv -hwaccel cuvid -c:v h264_cuvid -i <input.mp4> -vf scale_npp=1280:720 -c:v h264_nvenc <output.mp4>

Example applications:

  • Accelerated transcoding of consumer videos

Transcode a single video file to N streams

To do 1:N transcode, use the following command:

FFMPEG: ffmpeg -hwaccel cuvid -c:v h264_cuvid -i <input.mp4> -vf scale_npp=1280:720
-vcodec h264_nvenc <output0.mp4> -vf scale_npp 640:480 -vcodec h264_nvenc <output1.mp4>

LIBAV: avconv -hwaccel cuvid -c:v h264_cuvid -i <input.mp4> -vf scale_npp=1280:720 -vcodec h264_nvenc <output0.mp4> -vf scale_npp 640:480 -vcodec h264_nvenc <output1.mp4>

Example applications:

  • Commercial (data center) video transcoding

Resources

Supported GPUs

HW accelerated encode and decode are supported on NVIDIA GeForce, Quadro, Tesla, and GRID products with Fermi, Kepler, Maxwell and Pascal generation GPUs. Please refer to GPU
support matrix
 for specific codec support.

Additional Resources

【视频开发】【CUDA开发】ffmpeg Nvidia硬件加速总结的更多相关文章

  1. 【并行计算-CUDA开发】【视频开发】ffmpeg Nvidia硬件加速总结

    2017年5月25日 0. 概述 FFmpeg可通过Nvidia的GPU进行加速,其中高层接口是通过Video Codec SDK来实现GPU资源的调用.Video Codec SDK包含完整的的高性 ...

  2. 【并行计算与CUDA开发】英伟达硬件加速编解码

    硬件加速 并行计算 OpenCL OpenCL API VS SDK 英伟达硬件编解码方案 基于 OpenCL 的 API 自己写一个编解码器 使用 SDK 中的编解码接口 使用编码器对于 OpenC ...

  3. 【并行计算与CUDA开发】英伟达硬件加速解码器在 FFMPEG 中的使用

    目录(?)[-] 私有驱动 编译 FFMPEG 使用 nvenc 这篇文档介绍如何在 ffmpeg 中使用 nvenc 硬件编码器. 私有驱动 nvenc 本身是依赖于 nvidia 底层的私有驱动的 ...

  4. 【并行计算-CUDA开发】CUDA软件架构与Nvidia硬件对应关系

    前面扯了很多,不过大多都是在讲CUDA 在软体层面的东西:接下来,虽然Heresy 自己也不熟,不过还是来研究一下硬体的部分吧-毕竟要最佳化的时候,好像还是要大概知道一下相关的东西的.这部分主要参考资 ...

  5. FFmpeg再学习 -- 硬件加速编解码

    为了搞硬件加速编解码,用了一周时间来看 CUDA,接下来开始加以总结. 一.什么是 CUDA (1)首先需要了解一下,什么是 CUDA. 参看:百度百科 -- CUDA 参看:CUDA基础介绍 参看: ...

  6. 【视频开发】【CUDA开发】FFMPEG硬件加速-nvidia方案

    1.目标 <1>显卡性能参数: <2>方案可行性: 2.平台信息 2.1.查看当前显卡信息 命令:  lspci |grep VGA  信息:  01:00.0 VGA com ...

  7. 【ARM-Linux开发】【CUDA开发】【视频开发】关于Linux下利用GPU对视频进行硬件加速转码的方案

    最近一直在研究Linux下利用GPU进行硬件加速转码的方案,折腾了很久,至今没有找到比较理想的硬加速转码方案.似乎网上讨论这一方案的文章也特别少,这个过程中也进行了各种尝试,遇到很多具体问题,以下便对 ...

  8. 【视频开发】ffmpeg实现dxva2硬件加速

    这几天在做dxva2硬件加速,找不到什么资料,翻译了一下微软的两篇相关文档.这是第二篇,记录用ffmpeg实现dxva2. 第一篇翻译的Direct3D device manager,链接:http: ...

  9. 【并行计算-CUDA开发】 NVIDIA Jetson TX1

    概述 NVIDIA Jetson TX1是计算机视觉系统的SoM(system-on-module)解决方案.它组合了最新的NVIDIAMaxwell GPU架构,其具有ARM Cortex-A57 ...

随机推荐

  1. fastjson异常(字符串集合转成字符串数组)

    我是在项目中,因为受到一个string类型的list集合,然后需要把这个字符串发送给前端,进行解析. 但是前端收到的是一个字符串,不能进行解析. 所以采用 ArrayUtils.clone(JSONO ...

  2. python3爬虫--反爬虫应对机制

    python3爬虫--反爬虫应对机制 内容来源于: Python3网络爬虫开发实战: 网络爬虫教程(python2): 前言: 反爬虫更多是一种攻防战,针对网站的反爬虫处理来采取对应的应对机制,一般需 ...

  3. 《Java周边》vue开发环境搭建(windows)

    1. NodeJs 安装包下载 百度云:链接: https://pan.baidu.com/s/169TdKRLZd0dXbKSGTr8evw 提取码: th4a 复制这段内容后打开百度网盘手机App ...

  4. js判断是否第一次访问跳转

    今天分享一套关于Js劫持代码,进行判断第一次访问进行跳转,仅供大家参考学习! 未加密: if (c.indexOf('isfirstvisited=false') != -1) { } else { ...

  5. Python库资源大全【收藏】

    本文是一个精心设计的Python框架.库.软件和资源列表,是一个Awesome XXX系列的资源整理,由BigQuant整理加工而成,欢迎扩散.欢迎补充! 对机器学习.深度学习在量化投资中应用感兴趣的 ...

  6. Spark 缓存机制

    Spark中的缓存机制:避免spark每次都重算RDD以及它的所有依赖,cache().persist(). checkpoint(). 1.cache():会被重复使用,但是不能太大的RDD,将其c ...

  7. 目标检测的mAp

    众多目标检测的知识中,都提到了mAp一值,那么这个东西到底是什么呢: 我们在评价一个目标检测算法的"好坏"程度的时候,往往采用的是pascal voc 2012的评价标准mAP.目 ...

  8. solidworks 学习 (三)

    汽车轮毂三维建模

  9. nexus 3.17.0 做为golang 的包管理工具

    nexus 3.17.0 新版本对于go 包管理的支持是基于go mod 的,同时我们也需要一个athens server 然后在nexus 中配置proxy 类型的repo 参考配置 来自官方的配置 ...

  10. rpm 简单 package 创建demo

    安装的工具 yum install -y rpmdevtools 准备环境 主要是初始化,会自动创建rpm 包构建需要的目录 rpmdev-setuptree 编写简单的spec cd ~/rpmbu ...