原文链接:https://developer.nvidia.com/ffmpeg

GPU-accelerated video processing integrated into the most popular open-source multimedia tools.

FFmpeg and libav are among the most popular open-source multimedia manipulation tools with a library of plugins that can be applied to various parts of the audio and video processing pipelines and have achieved
wide adoption across the world.

Video encoding, decoding and transcoding are some of the most popular applications of FFmpeg. Thanks to the support of the FFmpeg and libav community and contributions from NVIDIA engineers, both of these tools
now support native NVIDIA GPU hardware accelerated video encoding and decoding through the integration of the NVIDIA Video Codec SDK.

Leveraging FFmpeg’s Audio codec, stream muxing, and RTP protocols, the FFmpeg’s integration of NVIDIA Video Codec SDK enables high performance hardware accelerated video pipelines.

FFmpeg uses Video Codec SDK

If you have an NVIDIA GPU which supports hardware-accelerated video encoding and decoding, it’s simply a matter of compiling FFmpeg binary with the required support for NVIDIA libraries and using the resulting binaries
to speed up video encoding/decoding.

FFmpeg supports following functionality accelerated by video hardware on NVIDIA GPUs:

  • Hardware-accelerated encoding of H.264 and HEVC*
  • Hardware-accelerated decoding** of H.264, HEVC, VP9, VP8, MPEG2, and MPEG4*
  • Granular control over encoding settings such as encoding preset, rate control and other video quality parameters
  • Create high-performance end-to-end hardware-accelerated video processing, 1:N encoding and 1:N transcoding pipeline using built-in filters in FFmpeg
  • Ability to add your own custom high-performance CUDA filters using the shared CUDA context implementation in FFmpeg
  • Windows/Linux support

* Support is dependent on HW. For a full list of GPUs and formats supported, please see the available GPU
Support Matrix.
 

** HW decode support will be added to libav in the near future

Operating System Windows 7, 8, 10, and Linux
Dependencies NVENCODE API - NVIDIA Quadro, Tesla, GRID or GeForce products with Kepler, Maxwell
and Pascal generation GPUs. 

NVDECODE API - NVIDIA Quadro, Tesla, GRID or GeForce products with Fermi, Kepler,
Maxwell and Pascal generation GPUs. 

GPU Support Matrix 

Appropriate NVIDIA Display Driver 

DirectX SDK (Windows only) Optional: CUDA
toolkit 7.5
Development Environment Windows: Visual Studio 2010/2013/2015, MSYS/MinGW

Linux: gcc 4.8 or higher

FFmpeg GPU HW-Acceleration Support Table

  Fermi Kepler Maxwell (1st Gen) Maxwell (2nd Gen) Maxwell (GM206) Pascal
H.264 encoding N/A FFmpeg v3.3 FFmpeg v3.3 FFmpeg v3.3 FFmpeg v3.3 FFmpeg v3.3
HEVC encoding N/A N/A N/A FFmpeg v3.3 FFmpeg v3.3 FFmpeg v3.3
MPEG2, MPEG-4, H.264 decoding FFmpeg v3.3 FFmpeg v3.3 FFmpeg v3.3 FFmpeg v3.3 FFmpeg v3.3 FFmpeg v3.3
HEVC decoding N/A N/A N/A N/A FFmpeg v3.3 FFmpeg v3.3
VP9 decoding N/A N/A N/A FFmpeg v3.3 FFmpeg v3.3 FFmpeg v3.3

For guidelines about NVIDIA GPU-accelerated video encoding/decoding performance, please visit the Video
Codec SDK page
 for more details.

Getting Started with FFmpeg/libav using NVIDIA GPUs

Using NVIDIA hardware acceleration in FFmpeg/libav requires the following steps

  • Download the latest FFmpeg or libav source
    code, by cloning the corresponding GIT repositories
  • FFmpeg: https://git.FFmpeg.org/FFmpeg.git
  • Libav: https://github.com/libav/libav
  • Download and install the compatible driver from NVIDIA web site
  • Downoad and install the CUDA Toolkit CUDA toolkit
  • Use the following configure command (Use correct CUDA library path in config command below) 
    ./configure --enable-cuda --enable-cuvid --enable-nvenc --enable-nonfree
    --enable-libnpp 

    --extra-cflags=-I/usr/local/cuda/include --extra-ldflags=-L/usr/local/cuda/lib64
  • Use following command for build: make -j 10
  • Use FFmpeg/libav binary as required. To start with FFmpeg, try the below sample command line for 1:2 transcoding
    ffmpeg -y -hwaccel cuvid -c:v h264_cuvid -vsync 0 -i <input.mp4> –vf scale_npp=1920:1072

    -vcodec h264_nvenc <output0.264> -vf scale_npp=1280:720 -vcodec h264_nvenc <output1.264>

For more information on FFmpeg licensing, please see this page.

FFmpeg in Action

FFmpeg is used by many projects, including Google Chrome and VLC player. You can easily integrate NVIDIA hardware-acceleration to these applications by configuring FFmpeg to use NVIDIA GPUs for video encoding and decoding tasks.

HandBrake is an open-source video transcoder available for Linux,
Mac, and Windows.

HandBrake works with most common video files and formats, including ones created by consumer and professional video cameras, mobile devices such as phones and tablets, game and computer screen recordings, and DVD and Blu-ray discs. HandBrake leverages tools
such as Libav, x264, and x265 to create new MP4 or MKV video files from these.

Plex Media Server is a client-server media player system and software suite that runs on Windows, macOS, linux,
FreeBSD or a NAS. Plex organizes all of the videos, music, and photos from your computer’s personal media library and let you stream to your devices.

The Plex Transcoder uses FFmpeg to handle and translates your media into that the format your client device supports.

How to use FFmpeg/libav with NVIDIA GPU-acceleration

Decode a single H.264 to YUV

To decode a single H.264 encoded elementary bitstream file into YUV, use the following command:

FFMPEG: ffmpeg -vsync 0 -c:v h264_cuvid -i <input.mp4> -f rawvideo <output.yuv>

LIBAV: avconv -vsync 0 -c:v h264_cuvid -i <input.mp4> -f rawvideo <output.yuv>

Example applications:

  • Video analytics, video inferencing
  • Video post-processing
  • Video playback

Encode a single YUV file to a bitstream

To encode a single YUV file into an H.264/HEVC bitstream, use the following command:

H.264

FFMPEG: ffmpeg -f rawvideo -s:v 1920x1080 -r 30 -pix_fmt yuv420p -i <input.yuv>
-c:v h264_nvenc -preset slow -cq 10 -bf 2 -g 150 <output.mp4>

LIBAV: avconv -f rawvideo -s:v 1920x1080 -r 30 -pix_fmt yuv420p -i <input.yuv> -c:v h264_nvenc -preset slow -cq 10 -bf 2 -g 150 <output.mp4>
 

HEVC (No B-frames)

FFMPEG: ffmpeg -f rawvideo -s:v 1920x1080 -r 30 -pix_fmt yuv420p -i <input.yuv>
-vcodec hevc_nvenc -preset slow -cq 10 -g 150 <output.mp4>

LIBAV: avconv -f rawvideo -s:v 1920x1080 -r 30 -pix_fmt yuv420p -i <input.yuv> -vcodec hevc_nvenc -preset slow -cq 10 -g 150 <output.mp4>

Example applications:

  • Surveillance
  • Archiving footages from remote cameras
  • Archiving raw captured video from a single camera

Transcode a single video file

To do 1:1 transcode, use the following command:

FFMPEG: ffmpeg -hwaccel cuvid -c:v h264_cuvid -i <input.mp4> -vf scale_npp=1280:720
-c:v h264_nvenc <output.mp4>

LIBAV: avconv -hwaccel cuvid -c:v h264_cuvid -i <input.mp4> -vf scale_npp=1280:720 -c:v h264_nvenc <output.mp4>

Example applications:

  • Accelerated transcoding of consumer videos

Transcode a single video file to N streams

To do 1:N transcode, use the following command:

FFMPEG: ffmpeg -hwaccel cuvid -c:v h264_cuvid -i <input.mp4> -vf scale_npp=1280:720
-vcodec h264_nvenc <output0.mp4> -vf scale_npp 640:480 -vcodec h264_nvenc <output1.mp4>

LIBAV: avconv -hwaccel cuvid -c:v h264_cuvid -i <input.mp4> -vf scale_npp=1280:720 -vcodec h264_nvenc <output0.mp4> -vf scale_npp 640:480 -vcodec h264_nvenc <output1.mp4>

Example applications:

  • Commercial (data center) video transcoding

Resources

Supported GPUs

HW accelerated encode and decode are supported on NVIDIA GeForce, Quadro, Tesla, and GRID products with Fermi, Kepler, Maxwell and Pascal generation GPUs. Please refer to GPU
support matrix
 for specific codec support.

Additional Resources

【视频开发】【CUDA开发】ffmpeg Nvidia硬件加速总结的更多相关文章

  1. 【并行计算-CUDA开发】【视频开发】ffmpeg Nvidia硬件加速总结

    2017年5月25日 0. 概述 FFmpeg可通过Nvidia的GPU进行加速,其中高层接口是通过Video Codec SDK来实现GPU资源的调用.Video Codec SDK包含完整的的高性 ...

  2. 【并行计算与CUDA开发】英伟达硬件加速编解码

    硬件加速 并行计算 OpenCL OpenCL API VS SDK 英伟达硬件编解码方案 基于 OpenCL 的 API 自己写一个编解码器 使用 SDK 中的编解码接口 使用编码器对于 OpenC ...

  3. 【并行计算与CUDA开发】英伟达硬件加速解码器在 FFMPEG 中的使用

    目录(?)[-] 私有驱动 编译 FFMPEG 使用 nvenc 这篇文档介绍如何在 ffmpeg 中使用 nvenc 硬件编码器. 私有驱动 nvenc 本身是依赖于 nvidia 底层的私有驱动的 ...

  4. 【并行计算-CUDA开发】CUDA软件架构与Nvidia硬件对应关系

    前面扯了很多,不过大多都是在讲CUDA 在软体层面的东西:接下来,虽然Heresy 自己也不熟,不过还是来研究一下硬体的部分吧-毕竟要最佳化的时候,好像还是要大概知道一下相关的东西的.这部分主要参考资 ...

  5. FFmpeg再学习 -- 硬件加速编解码

    为了搞硬件加速编解码,用了一周时间来看 CUDA,接下来开始加以总结. 一.什么是 CUDA (1)首先需要了解一下,什么是 CUDA. 参看:百度百科 -- CUDA 参看:CUDA基础介绍 参看: ...

  6. 【视频开发】【CUDA开发】FFMPEG硬件加速-nvidia方案

    1.目标 <1>显卡性能参数: <2>方案可行性: 2.平台信息 2.1.查看当前显卡信息 命令:  lspci |grep VGA  信息:  01:00.0 VGA com ...

  7. 【ARM-Linux开发】【CUDA开发】【视频开发】关于Linux下利用GPU对视频进行硬件加速转码的方案

    最近一直在研究Linux下利用GPU进行硬件加速转码的方案,折腾了很久,至今没有找到比较理想的硬加速转码方案.似乎网上讨论这一方案的文章也特别少,这个过程中也进行了各种尝试,遇到很多具体问题,以下便对 ...

  8. 【视频开发】ffmpeg实现dxva2硬件加速

    这几天在做dxva2硬件加速,找不到什么资料,翻译了一下微软的两篇相关文档.这是第二篇,记录用ffmpeg实现dxva2. 第一篇翻译的Direct3D device manager,链接:http: ...

  9. 【并行计算-CUDA开发】 NVIDIA Jetson TX1

    概述 NVIDIA Jetson TX1是计算机视觉系统的SoM(system-on-module)解决方案.它组合了最新的NVIDIAMaxwell GPU架构,其具有ARM Cortex-A57 ...

随机推荐

  1. PyInstaller库,打包成exe基本介绍

    一.pyinstaller简介 Python是一个脚本语言,被解释器解释执行.它的发布方式: .py文件:对于开源项目或者源码没那么重要的,直接提供源码,需要使用者自行安装Python并且安装依赖的各 ...

  2. mongodb 简单使用说明

    首先安装  mongodb软件地址 https://www.mongodb.org/downloads#production: 然后在 mongodb安装目录下找到bin 文件夹进去 在它的位置上按下 ...

  3. django--远程mysql

    settings.py中配置 DATABASES = { 'default': { 'ENGINE': 'django.db.backends.mysql', 'NAME': 'ttsx', # 数据 ...

  4. 使用mybatis框架实现带条件查询-多条件(传入Map集合)

    我们发现我们可以通过传入javaBean的方式实现我们的需求,但是就两个条件,思考:现在就给他传入一个实体类,对系统性能的开销是不是有点大了. 现在改用传入Map集合的方式: 奥!对了,在创建map集 ...

  5. 洛谷 P1226 【模板】快速幂||取余运算 题解

    Analysis 快速幂模板,注意在最后输出时也要取模. 快速幂模板 inline ll ksm(ll x,ll y) { ll ans=; ) { ) { ans*=x; ans%=k; } x*= ...

  6. c++ 去掉所有空格及换行符

    string get_string(string res){ //删除换行符 int r = res.find('\r\n'); while (r != string::npos) { if (r ! ...

  7. Python json数据写入csv json excel文件

    一.写入 写入csv和json, 可以使用csv这个包写, 我这里没有使用, 并且把写csv和json的写到一起了 具体的代码就不解释了 def write_file(file_name, items ...

  8. 特征缩放(Feature Scaling)

    特征缩放的几种方法: (1)最大最小值归一化(min-max normalization):将数值范围缩放到 [0, 1] 区间里 (2)均值归一化(mean normalization):将数值范围 ...

  9. TCP网络程序设计

    tcp_server.c #include<stdio.h>#include<sys/socket.h>#include<string.h>#include< ...

  10. xmind 破解

    邮箱:x@iroader 序列号: XAka34A2rVRYJ4XBIU35UZMUEEF64CMMIYZCK2FZZUQNODEKUHGJLFMSLIQMQUCUBXRENLK6NZL37JXP4P ...