原文链接:https://developer.nvidia.com/ffmpeg

GPU-accelerated video processing integrated into the most popular open-source multimedia tools.

FFmpeg and libav are among the most popular open-source multimedia manipulation tools with a library of plugins that can be applied to various parts of the audio and video processing pipelines and have achieved
wide adoption across the world.

Video encoding, decoding and transcoding are some of the most popular applications of FFmpeg. Thanks to the support of the FFmpeg and libav community and contributions from NVIDIA engineers, both of these tools
now support native NVIDIA GPU hardware accelerated video encoding and decoding through the integration of the NVIDIA Video Codec SDK.

Leveraging FFmpeg’s Audio codec, stream muxing, and RTP protocols, the FFmpeg’s integration of NVIDIA Video Codec SDK enables high performance hardware accelerated video pipelines.

FFmpeg uses Video Codec SDK

If you have an NVIDIA GPU which supports hardware-accelerated video encoding and decoding, it’s simply a matter of compiling FFmpeg binary with the required support for NVIDIA libraries and using the resulting binaries
to speed up video encoding/decoding.

FFmpeg supports following functionality accelerated by video hardware on NVIDIA GPUs:

  • Hardware-accelerated encoding of H.264 and HEVC*
  • Hardware-accelerated decoding** of H.264, HEVC, VP9, VP8, MPEG2, and MPEG4*
  • Granular control over encoding settings such as encoding preset, rate control and other video quality parameters
  • Create high-performance end-to-end hardware-accelerated video processing, 1:N encoding and 1:N transcoding pipeline using built-in filters in FFmpeg
  • Ability to add your own custom high-performance CUDA filters using the shared CUDA context implementation in FFmpeg
  • Windows/Linux support

* Support is dependent on HW. For a full list of GPUs and formats supported, please see the available GPU
Support Matrix.
 

** HW decode support will be added to libav in the near future

Operating System Windows 7, 8, 10, and Linux
Dependencies NVENCODE API - NVIDIA Quadro, Tesla, GRID or GeForce products with Kepler, Maxwell
and Pascal generation GPUs. 

NVDECODE API - NVIDIA Quadro, Tesla, GRID or GeForce products with Fermi, Kepler,
Maxwell and Pascal generation GPUs. 

GPU Support Matrix 

Appropriate NVIDIA Display Driver 

DirectX SDK (Windows only) Optional: CUDA
toolkit 7.5
Development Environment Windows: Visual Studio 2010/2013/2015, MSYS/MinGW

Linux: gcc 4.8 or higher

FFmpeg GPU HW-Acceleration Support Table

  Fermi Kepler Maxwell (1st Gen) Maxwell (2nd Gen) Maxwell (GM206) Pascal
H.264 encoding N/A FFmpeg v3.3 FFmpeg v3.3 FFmpeg v3.3 FFmpeg v3.3 FFmpeg v3.3
HEVC encoding N/A N/A N/A FFmpeg v3.3 FFmpeg v3.3 FFmpeg v3.3
MPEG2, MPEG-4, H.264 decoding FFmpeg v3.3 FFmpeg v3.3 FFmpeg v3.3 FFmpeg v3.3 FFmpeg v3.3 FFmpeg v3.3
HEVC decoding N/A N/A N/A N/A FFmpeg v3.3 FFmpeg v3.3
VP9 decoding N/A N/A N/A FFmpeg v3.3 FFmpeg v3.3 FFmpeg v3.3

For guidelines about NVIDIA GPU-accelerated video encoding/decoding performance, please visit the Video
Codec SDK page
 for more details.

Getting Started with FFmpeg/libav using NVIDIA GPUs

Using NVIDIA hardware acceleration in FFmpeg/libav requires the following steps

  • Download the latest FFmpeg or libav source
    code, by cloning the corresponding GIT repositories
  • FFmpeg: https://git.FFmpeg.org/FFmpeg.git
  • Libav: https://github.com/libav/libav
  • Download and install the compatible driver from NVIDIA web site
  • Downoad and install the CUDA Toolkit CUDA toolkit
  • Use the following configure command (Use correct CUDA library path in config command below) 
    ./configure --enable-cuda --enable-cuvid --enable-nvenc --enable-nonfree
    --enable-libnpp 

    --extra-cflags=-I/usr/local/cuda/include --extra-ldflags=-L/usr/local/cuda/lib64
  • Use following command for build: make -j 10
  • Use FFmpeg/libav binary as required. To start with FFmpeg, try the below sample command line for 1:2 transcoding
    ffmpeg -y -hwaccel cuvid -c:v h264_cuvid -vsync 0 -i <input.mp4> –vf scale_npp=1920:1072

    -vcodec h264_nvenc <output0.264> -vf scale_npp=1280:720 -vcodec h264_nvenc <output1.264>

For more information on FFmpeg licensing, please see this page.

FFmpeg in Action

FFmpeg is used by many projects, including Google Chrome and VLC player. You can easily integrate NVIDIA hardware-acceleration to these applications by configuring FFmpeg to use NVIDIA GPUs for video encoding and decoding tasks.

HandBrake is an open-source video transcoder available for Linux,
Mac, and Windows.

HandBrake works with most common video files and formats, including ones created by consumer and professional video cameras, mobile devices such as phones and tablets, game and computer screen recordings, and DVD and Blu-ray discs. HandBrake leverages tools
such as Libav, x264, and x265 to create new MP4 or MKV video files from these.

Plex Media Server is a client-server media player system and software suite that runs on Windows, macOS, linux,
FreeBSD or a NAS. Plex organizes all of the videos, music, and photos from your computer’s personal media library and let you stream to your devices.

The Plex Transcoder uses FFmpeg to handle and translates your media into that the format your client device supports.

How to use FFmpeg/libav with NVIDIA GPU-acceleration

Decode a single H.264 to YUV

To decode a single H.264 encoded elementary bitstream file into YUV, use the following command:

FFMPEG: ffmpeg -vsync 0 -c:v h264_cuvid -i <input.mp4> -f rawvideo <output.yuv>

LIBAV: avconv -vsync 0 -c:v h264_cuvid -i <input.mp4> -f rawvideo <output.yuv>

Example applications:

  • Video analytics, video inferencing
  • Video post-processing
  • Video playback

Encode a single YUV file to a bitstream

To encode a single YUV file into an H.264/HEVC bitstream, use the following command:

H.264

FFMPEG: ffmpeg -f rawvideo -s:v 1920x1080 -r 30 -pix_fmt yuv420p -i <input.yuv>
-c:v h264_nvenc -preset slow -cq 10 -bf 2 -g 150 <output.mp4>

LIBAV: avconv -f rawvideo -s:v 1920x1080 -r 30 -pix_fmt yuv420p -i <input.yuv> -c:v h264_nvenc -preset slow -cq 10 -bf 2 -g 150 <output.mp4>
 

HEVC (No B-frames)

FFMPEG: ffmpeg -f rawvideo -s:v 1920x1080 -r 30 -pix_fmt yuv420p -i <input.yuv>
-vcodec hevc_nvenc -preset slow -cq 10 -g 150 <output.mp4>

LIBAV: avconv -f rawvideo -s:v 1920x1080 -r 30 -pix_fmt yuv420p -i <input.yuv> -vcodec hevc_nvenc -preset slow -cq 10 -g 150 <output.mp4>

Example applications:

  • Surveillance
  • Archiving footages from remote cameras
  • Archiving raw captured video from a single camera

Transcode a single video file

To do 1:1 transcode, use the following command:

FFMPEG: ffmpeg -hwaccel cuvid -c:v h264_cuvid -i <input.mp4> -vf scale_npp=1280:720
-c:v h264_nvenc <output.mp4>

LIBAV: avconv -hwaccel cuvid -c:v h264_cuvid -i <input.mp4> -vf scale_npp=1280:720 -c:v h264_nvenc <output.mp4>

Example applications:

  • Accelerated transcoding of consumer videos

Transcode a single video file to N streams

To do 1:N transcode, use the following command:

FFMPEG: ffmpeg -hwaccel cuvid -c:v h264_cuvid -i <input.mp4> -vf scale_npp=1280:720
-vcodec h264_nvenc <output0.mp4> -vf scale_npp 640:480 -vcodec h264_nvenc <output1.mp4>

LIBAV: avconv -hwaccel cuvid -c:v h264_cuvid -i <input.mp4> -vf scale_npp=1280:720 -vcodec h264_nvenc <output0.mp4> -vf scale_npp 640:480 -vcodec h264_nvenc <output1.mp4>

Example applications:

  • Commercial (data center) video transcoding

Resources

Supported GPUs

HW accelerated encode and decode are supported on NVIDIA GeForce, Quadro, Tesla, and GRID products with Fermi, Kepler, Maxwell and Pascal generation GPUs. Please refer to GPU
support matrix
 for specific codec support.

Additional Resources

【视频开发】【CUDA开发】ffmpeg Nvidia硬件加速总结的更多相关文章

  1. 【并行计算-CUDA开发】【视频开发】ffmpeg Nvidia硬件加速总结

    2017年5月25日 0. 概述 FFmpeg可通过Nvidia的GPU进行加速,其中高层接口是通过Video Codec SDK来实现GPU资源的调用.Video Codec SDK包含完整的的高性 ...

  2. 【并行计算与CUDA开发】英伟达硬件加速编解码

    硬件加速 并行计算 OpenCL OpenCL API VS SDK 英伟达硬件编解码方案 基于 OpenCL 的 API 自己写一个编解码器 使用 SDK 中的编解码接口 使用编码器对于 OpenC ...

  3. 【并行计算与CUDA开发】英伟达硬件加速解码器在 FFMPEG 中的使用

    目录(?)[-] 私有驱动 编译 FFMPEG 使用 nvenc 这篇文档介绍如何在 ffmpeg 中使用 nvenc 硬件编码器. 私有驱动 nvenc 本身是依赖于 nvidia 底层的私有驱动的 ...

  4. 【并行计算-CUDA开发】CUDA软件架构与Nvidia硬件对应关系

    前面扯了很多,不过大多都是在讲CUDA 在软体层面的东西:接下来,虽然Heresy 自己也不熟,不过还是来研究一下硬体的部分吧-毕竟要最佳化的时候,好像还是要大概知道一下相关的东西的.这部分主要参考资 ...

  5. FFmpeg再学习 -- 硬件加速编解码

    为了搞硬件加速编解码,用了一周时间来看 CUDA,接下来开始加以总结. 一.什么是 CUDA (1)首先需要了解一下,什么是 CUDA. 参看:百度百科 -- CUDA 参看:CUDA基础介绍 参看: ...

  6. 【视频开发】【CUDA开发】FFMPEG硬件加速-nvidia方案

    1.目标 <1>显卡性能参数: <2>方案可行性: 2.平台信息 2.1.查看当前显卡信息 命令:  lspci |grep VGA  信息:  01:00.0 VGA com ...

  7. 【ARM-Linux开发】【CUDA开发】【视频开发】关于Linux下利用GPU对视频进行硬件加速转码的方案

    最近一直在研究Linux下利用GPU进行硬件加速转码的方案,折腾了很久,至今没有找到比较理想的硬加速转码方案.似乎网上讨论这一方案的文章也特别少,这个过程中也进行了各种尝试,遇到很多具体问题,以下便对 ...

  8. 【视频开发】ffmpeg实现dxva2硬件加速

    这几天在做dxva2硬件加速,找不到什么资料,翻译了一下微软的两篇相关文档.这是第二篇,记录用ffmpeg实现dxva2. 第一篇翻译的Direct3D device manager,链接:http: ...

  9. 【并行计算-CUDA开发】 NVIDIA Jetson TX1

    概述 NVIDIA Jetson TX1是计算机视觉系统的SoM(system-on-module)解决方案.它组合了最新的NVIDIAMaxwell GPU架构,其具有ARM Cortex-A57 ...

随机推荐

  1. Spring源码窥探之:注解方式的AOP原理

    AOP入口代码分析 通过注解的方式来实现AOP1. @EnableAspectJAutoProxy通过@Import注解向容器中注入了AspectJAutoProxyRegistrar这个类,而它在容 ...

  2. 日期对象|Date构造函数|

    var date = new Date(); console.log(date); //Date {Wed Dec 10 2014 15:59:24 GMT+0800} date.getDay() d ...

  3. Dubbo源码分析:Invoker

    背景 调用对象!在调用过程可以使用Filter接口方法.Inovoker调用过程采用了装饰者设计模式.Filter最后一个ExcpetionFilter对象,这个对象之后就调用服务方法.服务对象是配置 ...

  4. Centos7安装HBase1.4

    准备 1.hadoop集群已安装,这里将在Centos7安装Hadoop2.7的基础上安装hbase1.4,所以是同样的三台机器,其规划如下: hostname IP地址 部署规划 node1 172 ...

  5. Net-NTLMv1的利用思路

    Net-NTLMv1的加密方法: 客户端向服务器发送一个请求 服务器接收到请求后,生成一个16位的Challenge,发送回客户端 客户端接收到Challenge后,使用登录用户的密码hash对Cha ...

  6. WinDbg常用命令系列---单步执行p*

    p (Step) p命令执行单个指令或源代码行,并可选地显示所有寄存器和标志的结果值.当子例程调用或中断发生时,它们被视为单个步骤. 用户模式: [~Thread] p[r] [= StartAddr ...

  7. 14-ESP8266 SDK开发基础入门篇--上位机串口控制 Wi-Fi输出PWM的占空比,调节LED亮度,8266程序编写

    https://www.cnblogs.com/yangfengwu/p/11102026.html 首先规定下协议  ,CRC16就不加了哈,最后我会附上CRC16的计算程序,大家有兴趣自己加上 上 ...

  8. 72: libreoj #10147 区间dp

    $des$ 将 n 堆石子绕圆形操场排放,现要将石子有序地合并成一堆.规定每次只能选相邻的两堆合并成新的一堆,并将新的一堆的石子数记做该次合并的得分. 请编写一个程序,读入堆数 nnn 及每堆的石子数 ...

  9. springboot2.0整合redis作为缓存以json格式存储对象

    步骤1 <dependency> <groupId>org.springframework.boot</groupId> <artifactId>spr ...

  10. Go字符串常用处理

    应用到strings包 /** * @Author: jadeshu * @Description: * @File: main * @Version: 1.0.0 * @Date: 2019/11/ ...