code:

#include <bits/stdc++.h>
#define ll long long
#define setIO(s) freopen(s".in","r",stdin)
using namespace std;
int n;
const ll mod=167772161,G=3,N=400006;
ll f[N<<1],g[N<<1],fac[N],inv[N];
ll qpow(ll x,ll y)
{
ll tmp=1ll;
while(y)
{
if(y&1) tmp=tmp*x%mod;
y>>=1,x=x*x%mod;
}
return tmp;
}
void NTT(ll *a,int len,int flag)
{
int i,j,k,mid;
for(i=k=0;i<len;++i)
{
if(i>k) swap(a[i],a[k]);
for(j=len>>1;(k^=j)<j;j>>=1);
}
for(mid=1;mid<len;mid<<=1)
{
ll wn=qpow(G,(mod-1)/(mid<<1));
if(flag==-1) wn=qpow(wn,mod-2);
for(i=0;i<len;i+=(mid<<1))
{
ll w=1ll;
for(j=0;j<mid;++j)
{
ll x=a[i+j],y=w*a[i+mid+j]%mod;
a[i+j]=(x+y)%mod,a[i+j+mid]=(x-y+mod)%mod;
w=w*wn%mod;
}
}
}
if(flag==-1)
{
ll re=qpow(len,mod-2);
for(i=0;i<len;++i) a[i]=a[i]*re%mod;
}
}
int main()
{
// setIO("input");
scanf("%d",&n);
fac[0]=1ll;
inv[0]=1ll;
int i,j,limit=1;
for(i=1;i<=n;++i) fac[i]=fac[i-1]*1ll*i%mod, inv[i]=qpow(fac[i],mod-2);
for(i=0;i<=n;++i)
{
g[i]=qpow(i,n)*inv[i]%mod;
if(i&1) f[i]=mod-inv[i];
else f[i]=inv[i];
}
for(;limit<=2*(n+1);limit<<=1);
NTT(f,limit,1),NTT(g,limit,1);
for(i=0;i<limit;++i) f[i]=f[i]*g[i]%mod;
NTT(f,limit,-1);
for(i=0;i<=n;++i) printf("%lld ",f[i]);
return 0;
}

  

【luogu 5395】 【模板】第二类斯特林数·行的更多相关文章

  1. Codeforces 1528F - AmShZ Farm(转化+NTT+推式子+第二类斯特林数)

    Codeforces 题目传送门 & 洛谷题目传送门 神仙题,只不过感觉有点强行二合一(?). 首先考虑什么样的数组 \(a\) 符合条件,我们考虑一个贪心的思想,我们从前到后遍历,对于每一个 ...

  2. 【51NOD 1847】奇怪的数学题(莫比乌斯反演,杜教筛,min_25筛,第二类斯特林数)

    [51NOD 1847]奇怪的数学题(莫比乌斯反演,杜教筛,min_25筛,第二类斯特林数) 题面 51NOD \[\sum_{i=1}^n\sum_{j=1}^nsgcd(i,j)^k\] 其中\( ...

  3. 8-机器分配(hud4045-组合+第二类斯特林数)

    http://acm.hdu.edu.cn/showproblem.php?pid=4045 Machine schedulingTime Limit: 5000/2000 MS (Java/Othe ...

  4. bzoj 5093 [Lydsy1711月赛]图的价值 NTT+第二类斯特林数

    [Lydsy1711月赛]图的价值 Time Limit: 30 Sec  Memory Limit: 256 MBSubmit: 245  Solved: 128[Submit][Status][D ...

  5. CF961G Partitions(第二类斯特林数)

    传送门 对于每一个元素,我们只要能求出它的出现次数\(sum\),那么每个元素的贡献都是一样的,最终的答案为\(sum\times \sum_{i=1}^n w_i\) 那么分别讨论 如果这个元素自己 ...

  6. P4827 [国家集训队] Crash 的文明世界(第二类斯特林数+树形dp)

    传送门 对于点\(u\),所求为\[\sum_{i=1}^ndis(i,u)^k\] 把后面那堆东西化成第二类斯特林数,有\[\sum_{i=1}^n\sum_{j=0}^kS(k,j)\times ...

  7. 【bzoj5339】[TJOI2018]教科书般的亵渎(拉格朗日插值/第二类斯特林数)

    传送门 题意: 一开始有很多怪兽,每个怪兽的血量在\(1\)到\(n\)之间且各不相同,\(n\leq 10^{13}\). 然后有\(m\)种没有出现的血量,\(m\leq 50\). 现在有个人可 ...

  8. 【cf961G】G. Partitions(组合意义+第二类斯特林数)

    传送门 题意: 给出\(n\)个元素,每个元素有价值\(w_i\).现在要对这\(n\)个元素进行划分,共划分为\(k\)组.每一组的价值为\(|S|\sum_{i=0}^{|S|}w_i\). 最后 ...

  9. 【cf932E】E. Team Work(第二类斯特林数)

    传送门 题意: 求\(\displaystyle \sum_{i=0}^n{n\choose i}i^k,n\leq 10^9,k\leq 5000\). 思路: 将\(i^k\)用第二类斯特林数展开 ...

随机推荐

  1. ThreadLocal使用场景案例

    本篇是<ThreadLocal 那点事儿>的续集,如果您没看上一篇,就就有点亏了.如果您错过了这一篇,那亏得就更大了. 还是保持我一贯的 Style,用一个 Demo 来说话吧.用户提出一 ...

  2. 【leetcode-49】字母异位词分组

    给定一个字符串数组,将字母异位词组合在一起.字母异位词指字母相同,但排列不同的字符串. 示例: 输入: ["eat", "tea", "tan&quo ...

  3. SQL Server返回DATETIME类型,年、月、日、时、分、秒、毫秒

    SQL Server返回DATETIME类型的年.月.日,有两种方法,如下所示: DECLARE @now DATETIME=GETDATE() --第一种方法 SELECT @now,YEAR(@n ...

  4. FindWindow和FindWindowEx函数使用

    FindWindow(   lpClassName,        {窗口的类名}   lpWindowName: PChar {窗口的标题} ): HWND;              {返回窗口的 ...

  5. window当mac用,VirtualBox虚拟机安装os系统

    mac的环境让开发者很享受,既可以像在linux环境下开发,又可以享受到几乎window所有支持的工具软件,比如ide,note,browser 我的安装过程 1.首先你有了64位的window7操作 ...

  6. Java自学-类和对象 枚举类型

    枚举类型 步骤 1 : 预先定义的常量 枚举enum是一种特殊的类(还是类),使用枚举可以很方便的定义常量 比如设计一个枚举类型 季节,里面有4种常量 public enum Season { SPR ...

  7. 12、微信小程序实现授权

    在index.wxml中: <!--index.wxml--> <view wx:if="{{isHide}}"> <view wx:if=" ...

  8. layui 表格中实现照片预览,点击查看原图

    人员表格中实现照片预览,并且可点击放大.查看原图 <table id="dutyInfoTable" class="layui-hide">< ...

  9. JavaScript 事件(基础)

    一.事件 事件:触发-响应机制. 二.事件三要素 1.事件源:触发事件的元素 2.事件名称:发送了什么方式的事件 3.事件处理程序:事件触发后要执行的代码(函数形式) 三.事件的使用方式 1.获取元素 ...

  10. Sping注解开发

    基本注解 @Configuration 作用: 标记在类上表示是一个配置类(相当于一个配置类) @Bean 作用: 在容器中放一个bean相当于xml文件里的bean标签 @Configuration ...