【luogu 5395】 【模板】第二类斯特林数·行
code:
#include <bits/stdc++.h>
#define ll long long
#define setIO(s) freopen(s".in","r",stdin)
using namespace std;
int n;
const ll mod=167772161,G=3,N=400006;
ll f[N<<1],g[N<<1],fac[N],inv[N];
ll qpow(ll x,ll y)
{
ll tmp=1ll;
while(y)
{
if(y&1) tmp=tmp*x%mod;
y>>=1,x=x*x%mod;
}
return tmp;
}
void NTT(ll *a,int len,int flag)
{
int i,j,k,mid;
for(i=k=0;i<len;++i)
{
if(i>k) swap(a[i],a[k]);
for(j=len>>1;(k^=j)<j;j>>=1);
}
for(mid=1;mid<len;mid<<=1)
{
ll wn=qpow(G,(mod-1)/(mid<<1));
if(flag==-1) wn=qpow(wn,mod-2);
for(i=0;i<len;i+=(mid<<1))
{
ll w=1ll;
for(j=0;j<mid;++j)
{
ll x=a[i+j],y=w*a[i+mid+j]%mod;
a[i+j]=(x+y)%mod,a[i+j+mid]=(x-y+mod)%mod;
w=w*wn%mod;
}
}
}
if(flag==-1)
{
ll re=qpow(len,mod-2);
for(i=0;i<len;++i) a[i]=a[i]*re%mod;
}
}
int main()
{
// setIO("input");
scanf("%d",&n);
fac[0]=1ll;
inv[0]=1ll;
int i,j,limit=1;
for(i=1;i<=n;++i) fac[i]=fac[i-1]*1ll*i%mod, inv[i]=qpow(fac[i],mod-2);
for(i=0;i<=n;++i)
{
g[i]=qpow(i,n)*inv[i]%mod;
if(i&1) f[i]=mod-inv[i];
else f[i]=inv[i];
}
for(;limit<=2*(n+1);limit<<=1);
NTT(f,limit,1),NTT(g,limit,1);
for(i=0;i<limit;++i) f[i]=f[i]*g[i]%mod;
NTT(f,limit,-1);
for(i=0;i<=n;++i) printf("%lld ",f[i]);
return 0;
}
【luogu 5395】 【模板】第二类斯特林数·行的更多相关文章
- Codeforces 1528F - AmShZ Farm(转化+NTT+推式子+第二类斯特林数)
Codeforces 题目传送门 & 洛谷题目传送门 神仙题,只不过感觉有点强行二合一(?). 首先考虑什么样的数组 \(a\) 符合条件,我们考虑一个贪心的思想,我们从前到后遍历,对于每一个 ...
- 【51NOD 1847】奇怪的数学题(莫比乌斯反演,杜教筛,min_25筛,第二类斯特林数)
[51NOD 1847]奇怪的数学题(莫比乌斯反演,杜教筛,min_25筛,第二类斯特林数) 题面 51NOD \[\sum_{i=1}^n\sum_{j=1}^nsgcd(i,j)^k\] 其中\( ...
- 8-机器分配(hud4045-组合+第二类斯特林数)
http://acm.hdu.edu.cn/showproblem.php?pid=4045 Machine schedulingTime Limit: 5000/2000 MS (Java/Othe ...
- bzoj 5093 [Lydsy1711月赛]图的价值 NTT+第二类斯特林数
[Lydsy1711月赛]图的价值 Time Limit: 30 Sec Memory Limit: 256 MBSubmit: 245 Solved: 128[Submit][Status][D ...
- CF961G Partitions(第二类斯特林数)
传送门 对于每一个元素,我们只要能求出它的出现次数\(sum\),那么每个元素的贡献都是一样的,最终的答案为\(sum\times \sum_{i=1}^n w_i\) 那么分别讨论 如果这个元素自己 ...
- P4827 [国家集训队] Crash 的文明世界(第二类斯特林数+树形dp)
传送门 对于点\(u\),所求为\[\sum_{i=1}^ndis(i,u)^k\] 把后面那堆东西化成第二类斯特林数,有\[\sum_{i=1}^n\sum_{j=0}^kS(k,j)\times ...
- 【bzoj5339】[TJOI2018]教科书般的亵渎(拉格朗日插值/第二类斯特林数)
传送门 题意: 一开始有很多怪兽,每个怪兽的血量在\(1\)到\(n\)之间且各不相同,\(n\leq 10^{13}\). 然后有\(m\)种没有出现的血量,\(m\leq 50\). 现在有个人可 ...
- 【cf961G】G. Partitions(组合意义+第二类斯特林数)
传送门 题意: 给出\(n\)个元素,每个元素有价值\(w_i\).现在要对这\(n\)个元素进行划分,共划分为\(k\)组.每一组的价值为\(|S|\sum_{i=0}^{|S|}w_i\). 最后 ...
- 【cf932E】E. Team Work(第二类斯特林数)
传送门 题意: 求\(\displaystyle \sum_{i=0}^n{n\choose i}i^k,n\leq 10^9,k\leq 5000\). 思路: 将\(i^k\)用第二类斯特林数展开 ...
随机推荐
- 深入理解 Linux Cgroup 系列(二):玩转 CPU
原文链接:深入理解 Linux Cgroup 系列(二):玩转 CPU 上篇文章主要介绍了 cgroup 的一些基本概念,包括其在 CentOS 系统中的默认设置和控制工具,并以 CPU 为例阐述 c ...
- CSP2019退役记
写在前面 all last,我又失败了,我退役了 回忆我这个菜鸡OI生涯,有看机房神仙切题的乐趣,也有自己考场爆炸的辛酸 NOIP2017,我第一次参赛,我pj205二等打铁 NOIP2018,我第二 ...
- subjective--主观
existing in the mind; belonging to the thinking subject rather than to the object of thought (oppose ...
- MQTTv5.0 ---AUTH – 认证交换
AUTH报文被从客户端发送给服务端,或从服务端发送给客户端,作为扩展认证交换的一部分,比如质询/ 响应认证.如果CONNECT报文不包含相同的认证方法,则客户端或服务端发送AUTH报文将造成协议错 误 ...
- ML学习笔记之LATEX数学公式基本语法
作者:@houkai本文为作者原创,转载请注明出处:https://www.cnblogs.com/houkai/p/3399646.html 0x00 概述 TEX 是Donald E. Knuth ...
- Linux学习笔记之rpm包管理功能全解
0x00 软件包管理器 所有的软件都是由文件格式的程序代码(即源代码),经过编译成为一个可执行二进制文件:对于一个软件来说,其包含二进制程序.库文件.配置文件以及帮助文件.在应用中,每次要安装程序时通 ...
- ASP.NETCore 3.0 Autofac替换及控制器属性注入及全局容器使用
1.Autofac基础使用 参考: https://www.cnblogs.com/li150dan/p/10071079.html 2.ASP.NETCore 3.0 Autofac 容器替换 需要 ...
- 创建和使用CI / CD管道【译】【原】
在GitLab 8.8中引入. 介绍 管道是持续集成,交付和部署的顶级组件. 管道包括: 定义要运行的作业的作业.例如,代码编译或测试运行. 定义何时以及如何运行的阶段.例如,该测试仅在代码编译后运行 ...
- ELK部署配置使用记录
为什么要用ELK: 一般我们需要进行日志分析场景:直接在日志文件中 grep.awk 就可以获得自己想要的信息.但在规模较大的场景中,此方法效率低下,面临问题包括日志量太大如何归档.文本搜索太慢怎么办 ...
- Spring怎么管理事务?
我们一般通过aop管理事务,就是把代码看成一个纵向有序的,然后通过aop管理事务,就好比增删改的时候需要开启一个事务,我们给他配置一个required,required就是有事务就执行事务,没有就给他 ...