显然相当于求有不超过n-2m种颜色出现奇数次的方案数。由于相当于是对各种颜色选定出现次数后有序排列,可以考虑EGF。

  容易构造出EGF(ex-e-x)/2=Σx2k+1/(2k+1)!,即表示该颜色只能选奇数个。同理有EGF(ex+e-x)/2=Σx2k/(2k)!,即表示该颜色只能选偶数个。

  考虑暴力枚举有多少种颜色出现了奇数次。不妨设恰有i种颜色出现了奇数次的方案数为f(i),那么f(i)=n!·C(D,i)·[xn](((ex-e-x)/2)i·((ex+e-x)/2)D-i),答案显然为Σf(i) (i=0~n-2m)。

  然而看了一眼题解这种求f(i)的方式可能有点麻烦,不妨考虑容斥,设g(i)为钦定有i种颜色出现了奇数次的方案数,则显然有f(i)=Σ(-1)j-i·C(j,i)·g(j)。如果求得了所有g(i),f(i)显然可以NTT计算。

  于是考虑求g(i),有g(i)=n!·C(D,i)·[xn](((ex-e-x)/2)i·(ex)D-i),后一个EGF变的更简单,更易推导。使用二项式定理暴力展开前一个EGF,有g(i)=n!·C(D,i)·[xn](ΣC(i,j)·(-1)j·e-jx·e(i-j)x)·e(D-i)x/2i,指数相加后变成异常优美的g(i)=n!·C(D,i)·[xn](ΣC(i,j)·(-1)j·e(D-2j)x)/2i。由泰勒展开容易知道[xn]e(D-2j)x=(D-2j)n/n!。于是g(i)=C(D,i)/2i·ΣC(i,j)·(-1)j·(D-2j)n。同样是卷积形式,NTT计算即可。

  虽然推导过程看起来很简单,但这辈子都不可能会的。

#include<bits/stdc++.h>
using namespace std;
#define ll long long
#define P 998244353
#define N 550000
char getc(){char c=getchar();while ((c<'A'||c>'Z')&&(c<'a'||c>'z')&&(c<'0'||c>'9')) c=getchar();return c;}
int gcd(int n,int m){return m==0?n:gcd(m,n%m);}
int read()
{
int x=0,f=1;char c=getchar();
while (c<'0'||c>'9') {if (c=='-') f=-1;c=getchar();}
while (c>='0'&&c<='9') x=(x<<1)+(x<<3)+(c^48),c=getchar();
return x*f;
}
int D,n,m,f[N],g[N],r[N],fac[N],inv[N],ans;
int ksm(int a,int k)
{
if (a<0) a+=P;
int s=1;
for (;k;k>>=1,a=1ll*a*a%P) if (k&1) s=1ll*s*a%P;
return s;
}
int Inv(int a){return ksm(a,P-2);}
void DFT(int *a,int n,int g)
{
for (int i=0;i<n;i++) if (i<r[i]) swap(a[i],a[r[i]]);
for (int i=2;i<=n;i<<=1)
{
int wn=ksm(g,(P-1)/i);
for (int j=0;j<n;j+=i)
{
int w=1;
for (int k=j;k<j+(i>>1);k++,w=1ll*w*wn%P)
{
int x=a[k],y=1ll*w*a[k+(i>>1)]%P;
a[k]=(x+y)%P,a[k+(i>>1)]=(x-y+P)%P;
}
}
}
}
void FFT(int *f,int *g,int t)
{
DFT(f,t,3),DFT(g,t,3);
for (int i=0;i<t;i++) f[i]=1ll*f[i]*g[i]%P;
DFT(f,t,Inv(3));
for (int i=0;i<t;i++) f[i]=1ll*f[i]*Inv(t)%P;
}
int C(int n,int m){return 1ll*fac[n]*inv[m]%P*inv[n-m]%P;}
int main()
{
#ifndef ONLINE_JUDGE
freopen("a.in","r",stdin);
freopen("a.out","w",stdout);
const char LL[]="%I64d\n";
#else
const char LL[]="%lld\n";
#endif
D=read(),n=read(),m=read();
m=n-2*m;
if (m>=D) {cout<<ksm(D,n);return 0;}
if (m<0) {cout<<0;return 0;}
fac[0]=1;for (int i=1;i<=D;i++) fac[i]=1ll*fac[i-1]*i%P;
inv[0]=inv[1]=1;for (int i=2;i<=D;i++) inv[i]=P-1ll*(P/i)*inv[P%i]%P;
for (int i=2;i<=D;i++) inv[i]=1ll*inv[i-1]*inv[i]%P;
int t=1;while (t<=(D<<1)) t<<=1;
for (int i=0;i<t;i++) r[i]=(r[i>>1]>>1)|(i&1)*(t>>1);
for (int i=0;i<=D;i++) f[i]=1ll*ksm(-1,i)*ksm(D-2*i,n)%P*inv[i]%P;
for (int i=0;i<=D;i++) g[i]=inv[i];
FFT(f,g,t);
for (int i=0;i<=D;i++) f[i]=1ll*f[i]*fac[i]%P*ksm(Inv(2),i)%P*C(D,i)%P;
for (int i=0;i<=D;i++) f[i]=1ll*f[i]*fac[i]%P;
for (int i=D+1;i<t;i++) f[i]=0;
for (int i=0;i<=D;i++) g[i]=1ll*ksm(-1,i)*inv[i]%P;
reverse(g,g+D+1);
for (int i=D+1;i<t;i++) g[i]=0;
FFT(f,g,t);
for (int i=D;i<=D+D;i++) f[i]=1ll*f[i]*inv[i-D]%P;
for (int i=D;i<=D+m;i++) ans=(ans+f[i])%P;
cout<<ans;
return 0;
}

  

Luogu5401 CTS2019珍珠(生成函数+容斥原理+NTT)的更多相关文章

  1. LOJ3120 CTS2019 珍珠 生成函数、二项式反演、NTT

    传送门 题目大意:给出一个长度为\(n\)的序列\(a_i\),序列中每一个数可以取\(1\)到\(D\)中的所有数.问共有多少个序列满足:设\(p_i\)表示第\(i\)个数在序列中出现的次数,\( ...

  2. [LOJ#3120][Luogu5401][CTS2019]珍珠(容斥+生成函数)

    https://www.luogu.org/blog/user50971/solution-p5401 #include<cstdio> #include<algorithm> ...

  3. 题解-CTS2019 珍珠

    题面 CTS2019 珍珠 有 \(n\) 个在 \([1,d]\) 内的整数,求使可以拿出 \(2m\) 个整数凑成 \(m\) 个相等的整数对的方案数. 数据范围:\(0\le m\le 10^9 ...

  4. [CTS2019]珍珠——二项式反演

    [CTS2019]珍珠 考虑实际上,统计多少种染色方案,使得出现次数为奇数的颜色数<=n-2*m 其实看起来很像生成函数了 n很大?感觉生成函数会比较整齐,考虑生成函数能否把n放到数值的位置,而 ...

  5. 【题解】CTS2019珍珠(二项式反演+卷积)

    [题解]CTS2019珍珠 题目就是要满足这样一个条件\(c_i\)代表出现次数 \[ \sum {[\dfrac {c_i } 2]} \ge 2m \] 显然\(\sum c_i=n\)所以,而且 ...

  6. 【bzoj3456】城市规划 容斥原理+NTT+多项式求逆

    题目描述 求出n个点的简单(无重边无自环)无向连通图数目mod 1004535809(479 * 2 ^ 21 + 1). 输入 仅一行一个整数n(<=130000) 输出 仅一行一个整数, 为 ...

  7. [BZOJ5306] [HAOI2018]染色(容斥原理+NTT)

    [BZOJ5306] [HAOI2018]染色(容斥原理+NTT) 题面 一个长度为 n的序列, 每个位置都可以被染成 m种颜色中的某一种. 如果n个位置中恰好出现了 S次的颜色有 K种, 则小 C ...

  8. [CTS2019]珍珠(NTT+生成函数+组合计数+容斥)

    这题72分做法挺显然的(也是我VP的分): 对于n,D<=5000的数据,可以记录f[i][j]表示到第i次随机有j个数字未匹配的方案,直接O(nD)的DP转移即可. 对于D<=300的数 ...

  9. BZOJ1042 HAOI2008硬币购物(任意模数NTT+多项式求逆+生成函数/容斥原理+动态规划)

    第一眼生成函数.四个等比数列形式的多项式相乘,可以化成四个分式.其中分母部分是固定的,可以多项式求逆预处理出来.而分子部分由于项数很少,询问时2^4算一下贡献就好了.这个思路比较直观.只是常数巨大,以 ...

随机推荐

  1. iis网站搭建http访问的文件服务器

    1.首先打开Internet信息服务(IIS)管理器,选择新建网站,如果没有Internet信息服务(IIS)管理器,可以在控制面板添加,按照 控制面板\程序\程序和功能,点击 打开或关闭Window ...

  2. 多层nginx中的压缩问题 api接口>1M数据的返回浏览器 网关

    基础 前端异步请求,局部刷新,加大最大等待时间 nginx开启压缩 进阶 多级nginx的压缩 实践测试: 每级都要开启压缩 gizp on: 最外层开启,但最内层没有开启 最外层没有开启 最外层.最 ...

  3. 固定权重 关于Mxnet的一些基础知识理解(1)

    https://blog.csdn.net/pandav5/article/details/53993684 (1)Mxnet的数据格式为NDArray,当需要读取可观看的数据,就要调用: numpy ...

  4. springboot配置Filter的两种方法

    一.使用注解1. 假设Filter类的路径为com.sanro.filter @Slf4j @WebFilter(filterName = "authFilter", urlPat ...

  5. ubuntu二进制包安装openresty

    date: 2019-08-01 17:59:59 author: headsen chen # 导入我们的 GPG 密钥: wget -qO - https://openresty.org/pack ...

  6. 四、postman增加断言

    预期和实际结果的判断 预期==实际:用例通过,写到报告里 预期!==实际:用例失败,写到报告里 一.例子演示 相当于首页右侧的10大每天的内容 url:http://www.v2ex.com/api/ ...

  7. 【Java】 rapid-generator 代码生成器

    rapid-generator是一个生成器引擎,让你可以专注与代码生成器模板的编写, 可以生成如ibatis,ibatis3,hibernate,spring_mvc,struts2等等代码. rap ...

  8. Python json序列化时default/object_hook指定函数处理

    在Python中,json.dumps函数接受参数default用于指定一个函数,该函数能够把自定义类型的对象转换成可序列化的基本类型.json.loads函数接受参数objec_thook用于指定函 ...

  9. Python - Django - 模板语言之自定义过滤器

    自定义过滤器的文件: 在 app01 下新建一个 templatetags 的文件夹,然后创建 myfilter.py 文件 这个 templatetags 名字是固定的,myfilter 是自己起的 ...

  10. Java基础教程:枚举类型

    Java基础教程:枚举类型 枚举类型 枚举是将一具有类似特性的值归纳在一起的方法.比如,我们可以将周一到周日设计为一个枚举类型.彩虹的七种颜色设计为一个枚举类型. 常量实现枚举 我们通过定义常量的方式 ...