(转)AutoML 与轻量模型大列表: awesome-AutoML-and-Lightweight-Models
Awesome-AutoML-and-Lightweight-Models
原文:http://bbs.cvmart.net/articles/414/zi-yuan-automl-yu-qing-liang-mo-xing-da-lie-biao
A list of high-quality (newest) AutoML works and lightweight models including 1.) Neural Architecture Search, 2.) Lightweight Structures, 3.) Model Compression & Acceleration, 4.) Hyperparameter Optimization, 5.) Automated Feature Engineering.
This repo is aimed to provide the info for AutoML research (especially for the lightweight models). Welcome to PR the works (papers, repositories) that are missed by the repo.
1.) Neural Architecture Search
[Papers]
Gradient:
Searching for A Robust Neural Architecture in Four GPU Hours | [CVPR 2019]
- D-X-Y/GDAS | [Pytorch]
ASAP: Architecture Search, Anneal and Prune | [2019/04]
Single-Path NAS: Designing Hardware-Efficient ConvNets in less than 4 Hours | [2019/04]
- dstamoulis/single-path-nas | [Tensorflow]
Automatic Convolutional Neural Architecture Search for Image Classification Under Different Scenes | [IEEE Access 2019]
sharpDARTS: Faster and More Accurate Differentiable Architecture Search | [2019/03]
Learning Implicitly Recurrent CNNs Through Parameter Sharing | [ICLR 2019]
- lolemacs/soft-sharing | [Pytorch]
Probabilistic Neural Architecture Search | [2019/02]
Auto-DeepLab: Hierarchical Neural Architecture Search for Semantic Image Segmentation | [2019/01]
SNAS: Stochastic Neural Architecture Search | [ICLR 2019]
FBNet: Hardware-Aware Efficient ConvNet Design via Differentiable Neural Architecture Search | [2018/12]
Neural Architecture Optimization | [NIPS 2018]
- renqianluo/NAO | [Tensorflow]
DARTS: Differentiable Architecture Search | [2018/06]
- quark0/darts | [Pytorch]
- khanrc/pt.darts | [Pytorch]
- dragen1860/DARTS-PyTorch | [Pytorch]
Reinforcement Learning:
Template-Based Automatic Search of Compact Semantic Segmentation Architectures | [2019/04]
Understanding Neural Architecture Search Techniques | [2019/03]
Fast, Accurate and Lightweight Super-Resolution with Neural Architecture Search | [2019/01]
- falsr/FALSR | [Tensorflow]
Multi-Objective Reinforced Evolution in Mobile Neural Architecture Search | [2019/01]
- moremnas/MoreMNAS | [Tensorflow]
ProxylessNAS: Direct Neural Architecture Search on Target Task and Hardware | [ICLR 2019]
- MIT-HAN-LAB/ProxylessNAS | [Pytorch, Tensorflow]
Transfer Learning with Neural AutoML | [NIPS 2018]
Learning Transferable Architectures for Scalable Image Recognition | [2018/07]
- wandering007/nasnet-pytorch | [Pytorch]
- tensorflow/models/research/slim/nets/nasnet | [Tensorflow]
MnasNet: Platform-Aware Neural Architecture Search for Mobile | [2018/07]
- AnjieZheng/MnasNet-PyTorch | [Pytorch]
Practical Block-wise Neural Network Architecture Generation | [CVPR 2018]
Efficient Neural Architecture Search via Parameter Sharing | [ICML 2018]
- melodyguan/enas | [Tensorflow]
- carpedm20/ENAS-pytorch | [Pytorch]
Efficient Architecture Search by Network Transformation | [AAAI 2018]
Evolutionary Algorithm:
Single Path One-Shot Neural Architecture Search with Uniform Sampling | [2019/04]
DetNAS: Neural Architecture Search on Object Detection | [2019/03]
The Evolved Transformer | [2019/01]
Designing neural networks through neuroevolution | [Nature Machine Intelligence 2019]
EAT-NAS: Elastic Architecture Transfer for Accelerating Large-scale Neural Architecture Search | [2019/01]
Efficient Multi-objective Neural Architecture Search via Lamarckian Evolution | [ICLR 2019]
SMBO:
MFAS: Multimodal Fusion Architecture Search | [CVPR 2019]
DPP-Net: Device-aware Progressive Search for Pareto-optimal Neural Architectures | [ECCV 2018]
Progressive Neural Architecture Search | [ECCV 2018]
- titu1994/progressive-neural-architecture-search | [Keras, Tensorflow]
- chenxi116/PNASNet.pytorch | [Pytorch]
Random Search:
Exploring Randomly Wired Neural Networks for Image Recognition | [2019/04]
Searching for Efficient Multi-Scale Architectures for Dense Image Prediction | [NIPS 2018]
Hypernetwork:
- Graph HyperNetworks for Neural Architecture Search | [ICLR 2019]
Bayesian Optimization:
Partial Order Pruning
- Partial Order Pruning: for Best Speed/Accuracy Trade-off in Neural Architecture Search | [CVPR 2019]
- lixincn2015/Partial-Order-Pruning | [Caffe]
Knowledge Distillation
[Projects]
- Microsoft/nni | [Python]
2.) Lightweight Structures
[Papers]
Backbone:
- Searching for MobileNetV3 | [2019/05]
- kuan-wang/pytorch-mobilenet-v3 | [Pytorch]
- leaderj1001/MobileNetV3-Pytorch | [Pytorch]
Segmentation:
CGNet: A Light-weight Context Guided Network for Semantic Segmentation | [2019/04]
- wutianyiRosun/CGNet | [Pytorch]
ESPNetv2: A Light-weight, Power Efficient, and General Purpose Convolutional Neural Network | [2018/11]
- sacmehta/ESPNetv2 | [Pytorch]
ESPNet: Efficient Spatial Pyramid of Dilated Convolutions for Semantic Segmentation | [ECCV 2018]
- sacmehta/ESPNet | [Pytorch]
BiSeNet: Bilateral Segmentation Network for Real-time Semantic Segmentation | [ECCV 2018]
- ooooverflow/BiSeNet | [Pytorch]
- ycszen/TorchSeg | [Pytorch]
ERFNet: Efficient Residual Factorized ConvNet for Real-time Semantic Segmentation | [T-ITS 2017]
- Eromera/erfnet_pytorch | [Pytorch]
Object Detection:
ThunderNet: Towards Real-time Generic Object Detection | [2019/03]
Pooling Pyramid Network for Object Detection | [2018/09]
- tensorflow/models | [Tensorflow]
Tiny-DSOD: Lightweight Object Detection for Resource-Restricted Usages | [BMVC 2018]
- lyxok1/Tiny-DSOD | [Caffe]
Pelee: A Real-Time Object Detection System on Mobile Devices | [NeurIPS 2018]
- Robert-JunWang/Pelee | [Caffe]
- Robert-JunWang/PeleeNet | [Pytorch]
Receptive Field Block Net for Accurate and Fast Object Detection | [ECCV 2018]
- ruinmessi/RFBNet | [Pytorch]
- ShuangXieIrene/ssds.pytorch | [Pytorch]
- lzx1413/PytorchSSD | [Pytorch]
FSSD: Feature Fusion Single Shot Multibox Detector | [2017/12]
- ShuangXieIrene/ssds.pytorch | [Pytorch]
- lzx1413/PytorchSSD | [Pytorch]
- dlyldxwl/fssd.pytorch | [Pytorch]
Feature Pyramid Networks for Object Detection | [CVPR 2017]
- tensorflow/models | [Tensorflow]
3.) Model Compression & Acceleration
[Papers]
Compression:
The Lottery Ticket Hypothesis: Finding Sparse, Trainable Neural Networks | [ICLR 2019]
- google-research/lottery-ticket-hypothesis | [Tensorflow]
Rethinking the Value of Network Pruning | [ICLR 2019]
Slimmable Neural Networks | [ICLR 2019]
- JiahuiYu/slimmable_networks | [Pytorch]
AMC: AutoML for Model Compression and Acceleration on Mobile Devices | [ECCV 2018]
Learning Efficient Convolutional Networks through Network Slimming | [ICCV 2017]
- foolwood/pytorch-slimming | [Pytorch]
Channel Pruning for Accelerating Very Deep Neural Networks | [ICCV 2017]
- yihui-he/channel-pruning | [Caffe]
Pruning Convolutional Neural Networks for Resource Efficient Inference | [ICLR 2017]
- jacobgil/pytorch-pruning | [Pytorch]
Pruning Filters for Efficient ConvNets | [ICLR 2017]
Acceleration:
- Fast Algorithms for Convolutional Neural Networks | [CVPR 2016]
- andravin/wincnn | [Python]
[Projects]
- NervanaSystems/distiller | [Pytorch]
- Tencent/PocketFlow | [Tensorflow]
[Tutorials/Blogs]
4.) Hyperparameter Optimization
[Papers]
Tuning Hyperparameters without Grad Students: Scalable and Robust Bayesian Optimisation with Dragonfly | [2019/03]
Efficient High Dimensional Bayesian Optimization with Additivity and Quadrature Fourier Features | [NeurIPS 2018]
Google vizier: A service for black-box optimization | [SIGKDD 2017]
[Projects]
- BoTorch | [PyTorch]
- Ax (Adaptive Experimentation Platform) | [PyTorch]
- Microsoft/nni | [Python]
- dragonfly/dragonfly | [Python]
[Tutorials/Blogs]
Hyperparameter tuning in Cloud Machine Learning Engine using Bayesian Optimization
-
- krasserm/bayesian-machine-learning | [Python]
5.) Automated Feature Engineering
Model Analyzer
Netscope CNN Analyzer | [Caffe]
sksq96/pytorch-summary | [Pytorch]
Lyken17/pytorch-OpCounter | [Pytorch]
sovrasov/flops-counter.pytorch | [Pytorch]
References
- LITERATURE ON NEURAL ARCHITECTURE SEARCH
- handong1587/handong1587.github.io
- hibayesian/awesome-automl-papers
- mrgloom/awesome-semantic-segmentation
- amusi/awesome-object-detection
(转)AutoML 与轻量模型大列表: awesome-AutoML-and-Lightweight-Models的更多相关文章
- (转载) AutoML 与轻量模型大列表
作者:guan-yuan 项目地址:awesome-AutoML-and-Lightweight-Models 博客地址:http://www.lib4dev.in/info/guan-yuan/aw ...
- 轻量化模型之MobileNet系列
自 2012 年 AlexNet 以来,卷积神经网络在图像分类.目标检测.语义分割等领域获得广泛应用.随着性能要求越来越高,AlexNet 已经无法满足大家的需求,于是乎各路大牛纷纷提出性能更优越的 ...
- Raspkate - 基于.NET的可运行于树莓派的轻量型Web服务器
最近在业余时间玩玩树莓派,刚开始的时候在树莓派里写一些基于wiringPi库的C语言程序来控制树莓派的GPIO引脚,从而控制LED发光二极管的闪烁,后来觉得,是不是可以使用HTML5+jQuery等流 ...
- 编写轻量ajax组件01-对比webform平台上的各种实现方式
前言 Asp.net WebForm 和 Asp.net MVC(简称MVC) 都是基于Asp.net的web开发框架,两者有很大的区别,其中一个就是MVC更加注重http本质,而WebForm试图屏 ...
- 基于netty轻量的高性能分布式RPC服务框架forest<上篇>
工作几年,用过不不少RPC框架,也算是读过一些RPC源码.之前也撸过几次RPC框架,但是不断的被自己否定,最近终于又撸了一个,希望能够不断迭代出自己喜欢的样子. 顺便也记录一下撸RPC的过程,一来作为 ...
- SqlSugar轻量ORM
蓝灯软件数据股份有限公司项目,代码开源. SqlSugar是一款轻量级的MSSQL ORM ,除了具有媲美ADO的性能外还具有和EF相似简单易用的语法. 学习列表 0.功能更新 1.SqlSuga ...
- win10 uwp MVVM 轻量框架
如果在开发过程,遇到多个页面之间,需要传输信息,那么可能遇到设计的问题.如果因为一个页面内包含多个子页面和多个子页面之间的通信问题找不到一个好的解决方法,那么请看本文.如果因为ViewModel代码越 ...
- Web Scraper——轻量数据爬取利器
日常学习工作中,我们多多少少都会遇到一些数据爬取的需求,比如说写论文时要收集相关课题下的论文列表,运营活动时收集用户评价,竞品分析时收集友商数据. 当我们着手准备收集数据时,面对低效的复制黏贴工作,一 ...
- CNN结构演变总结(二)轻量化模型
CNN结构演变总结(一)经典模型 导言: 上一篇介绍了经典模型中的结构演变,介绍了设计原理,作用,效果等.在本文,将对轻量化模型进行总结分析. 轻量化模型主要围绕减少计算量,减少参数,降低实际运行时间 ...
随机推荐
- python字符串的常见方法
1.join方法:拼接字符串------->str a = "你是风儿我是沙"b = "@".join(a)print(b)>>>你@是 ...
- kubernetes集群的认证、授权、准入控制
一.kubernetes集群安全架构 用户使用kubectl.客户机或通过REST请求访问API.可以授权用户和Kubernetes服务帐户进行API访问.当一个请求到达API时,它会经历几个阶段,如 ...
- Django使用swagger生成接口文档
参考博客:Django接入Swagger,生成Swagger接口文档-操作解析 Swagger是一个规范和完整的框架,用于生成.描述.调用和可视化RESTful风格的Web服务.总体目标是使客户端和文 ...
- 每个程序员都应该知道延迟数—Latency Numbers Every Programmer Should Know
每个程序员都应该知道延迟数 Latency Numbers Every Programmer Should Know https://people.eecs.berkeley.edu/~rcs/res ...
- linux 非root用户安装nginx
第一步:首先下载依赖包 下载地址 pcre(www.pcre.org),zlib(www.zlib.org),openssl(www.openssl.org) 第二步:上传那个nginx的安装包 下载 ...
- Java精通并发-轻量级锁与重量级锁的变化深入详解
在上一次https://www.cnblogs.com/webor2006/p/11446129.html的理论的最后谈到了锁的演化,如下: 下面具体来阐述一下: 偏向锁:它是针对一个线程来说, 它的 ...
- test20190818 NOIP2019 模拟赛
0+0+20=20,不给大样例,小数据又水,还没有题解的垃圾题. A 题 问题描述: long long ago, Lxhgww 统治的国家里有 n 个城市,其中某一个城市是 capital (首都) ...
- [Svelte 3] Render HTML directly into a component in Svelte 3
Disclaimer: please use this feature carefully. <script> let stringToRender = "<h1>H ...
- 开始编写Makefile
1.Makefile 的编写规则一 目标列表:关联性列表 命令列表 目标列表:可以是多个以空格隔开多个目标文件 关联列表页称为先决条件:同样是用个或多个空格分开的目标文件 命令列表:用<tab& ...
- c语言数组的概念和指针的加减使用
//数组变量名:就是一个地址:就是数组首元素的地址#include <stdio.h> int main(void) { int age[5] = {10,50,100,22,44}; / ...