讲解几个重点知识

1、对于tf.get_variable()中的reuse,意思是,如果有名字一模一样的变量,则对这个变量继续使用,如果没有名字一模一样的变量,则创建这个变量

2、options=run_options, run_metadata=run_metadata这玩意不好使

3、记住accuracy的argmax()

4、求accuracy三步:(1)argmax() (2)cast() (3)reduce_mean()

以下是mnist_inference的内容
import tensorflow as tf

INPUT_NODE = 784
OUTPUT_NODE = 10
LAYER1_NODE = 500 def get_weight_variable(shape, regularizer):
weights = tf.get_variable("weights", shape, initializer=tf.truncated_normal_initializer(stddev=0.1))
if regularizer != None: tf.add_to_collection('losses', regularizer(weights))
return weights def inference(input_tensor, regularizer):
with tf.variable_scope('layer1'): weights = get_weight_variable([INPUT_NODE, LAYER1_NODE], regularizer)
biases = tf.get_variable("biases", [LAYER1_NODE], initializer=tf.constant_initializer(0.0))
layer1 = tf.nn.relu(tf.matmul(input_tensor, weights) + biases) with tf.variable_scope('layer2'):
weights = get_weight_variable([LAYER1_NODE, OUTPUT_NODE], regularizer)
biases = tf.get_variable("biases", [OUTPUT_NODE], initializer=tf.constant_initializer(0.0))
layer2 = tf.matmul(layer1, weights) + biases return layer2
以下是train的内容
import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data
import mnist_inference
from mnist_inference import inference BATCH_SIZE = 100
LEARNING_RATE_BASE = 0.8
LEARNING_RATE_DECAY = 0.99
REGULARIZATION_RATE = 0.0001
TRAINING_STEPS = 30000
MOVING_AVERAGE_DECAY = 0.99 def train(mnist):
# 输入数据的命名空间。
with tf.name_scope('input'):
x = tf.placeholder(tf.float32, [None, mnist_inference.INPUT_NODE], name='x-input')
y_ = tf.placeholder(tf.float32, [None, mnist_inference.OUTPUT_NODE], name='y-input') with tf.variable_scope("layer"):
regularizer = tf.contrib.layers.l2_regularizer(REGULARIZATION_RATE)
y = mnist_inference.inference(x, regularizer)
global_step = tf.Variable(0, trainable=False) # 处理滑动平均的命名空间。
with tf.name_scope("moving_average"):
variable_averages = tf.train.ExponentialMovingAverage(MOVING_AVERAGE_DECAY, global_step)
variables_averages_op = variable_averages.apply(tf.trainable_variables()) # 计算损失函数的命名空间。
with tf.name_scope("loss_function"):
cross_entropy = tf.nn.sparse_softmax_cross_entropy_with_logits(logits=y, labels=tf.argmax(y_, 1))
cross_entropy_mean = tf.reduce_mean(cross_entropy)
loss = cross_entropy_mean + tf.add_n(tf.get_collection('losses')) with tf.name_scope("layer"):
logits = inference(x, None)
accuracy_op = tf.reduce_mean(tf.cast(tf.equal(tf.argmax(y, 1), tf.argmax(y_, 1)), tf.float32))
# 定义学习率、优化方法及每一轮执行训练的操作的命名空间。
with tf.name_scope("train_step"):
learning_rate = tf.train.exponential_decay(
LEARNING_RATE_BASE,
global_step,
mnist.train.num_examples / BATCH_SIZE, LEARNING_RATE_DECAY,
staircase=True) train_step = tf.train.GradientDescentOptimizer(learning_rate).minimize(loss, global_step=global_step) with tf.control_dependencies([train_step, variables_averages_op]):
train_op = tf.no_op(name='train') writer = tf.summary.FileWriter("log", tf.get_default_graph()) # 注意这个是写在前面的 # 训练模型。
with tf.Session() as sess:
tf.global_variables_initializer().run()
for i in range(TRAINING_STEPS):
xs, ys = mnist.train.next_batch(BATCH_SIZE) if i % 1000 == 0:
# 配置运行时需要记录的信息。
run_options = tf.RunOptions(trace_level=tf.RunOptions.FULL_TRACE)
# 运行时记录运行信息的proto。
run_metadata = tf.RunMetadata()
_, loss_value, step = sess.run(
[train_op, loss, global_step], feed_dict={x: xs, y_: ys})
# options=run_options, run_metadata=run_metadata) # 看这里,在运行[train_op, loss, global_step]的时候,后边配置
# options = run_options, run_metadata = run_metadata
accuracy = sess.run(accuracy_op, feed_dict={x: mnist.validation.images, y_: mnist.validation.labels})
writer.add_run_metadata(run_metadata=run_metadata, tag=("tag%d" % i), global_step=i)
print("After %d training step(s), loss on training batch is %g." % (step, loss_value))
print("After %d training step(s), accuracy on validation batch is %g." % (step, accuracy))
else:
_, loss_value, step = sess.run([train_op, loss, global_step], feed_dict={x: xs, y_: ys}) writer.close() def main(argv=None):
mnist = input_data.read_data_sets("./MNIST_data", one_hot=True)
train(mnist) if __name__ == '__main__':
main()
以下是Tensorboard的结果

Tensorflow细节-P290-命名空间与tensorboard上的节点的更多相关文章

  1. Tensorflow学习笔记3:TensorBoard可视化学习

    TensorBoard简介 Tensorflow发布包中提供了TensorBoard,用于展示Tensorflow任务在计算过程中的Graph.定量指标图以及附加数据.大致的效果如下所示, Tenso ...

  2. ZBrush中如何把模型的细节映射到低模上

    我们在ZBrush®雕刻模型的时候,发现模型布线不利于雕刻,这使我们不得不对模型进行重建细分,而重建细分之后的模型细节已经没有了,这个时候我们就需要把原来高模的细节映射到新的模型上面. 接下来我们介绍 ...

  3. kafka在zookeeper上的节点信息和查看方式

    kafka在Zookeeper上的节点如下图: 该图片盗自大牛的博客http://blog.csdn.net/lizhitao/article/details/23744675 服务端开启的情况下,进 ...

  4. Activit的心路历程:获取当前节点的上一节点【可能存在多个】的nodeId

    在我的开发任务中,突然给我提出了一个待办任务需要获取当前任务节点上以任务节点的表单信息,刚开始搞得我有点措手不及,后来仔细是靠后,灵感一下,直接操作流程的bpmn信息就可以获取到节点信息嘛,顺着这个思 ...

  5. Tensorflow细节-Tensorboard可视化-简介

    先搞点基础的 注意注意注意,这里虽然很基础,但是代码应注意: 1.从writer开始后边就错开了 2.writer后可以直接接writer.close,也就是说可以: writer = tf.summ ...

  6. (第一章第二部分)TensorFlow框架之图与TensorBoard

    系列博客链接: (一)TensorFlow框架介绍:https://www.cnblogs.com/kongweisi/p/11038395.html 本文概述: 说明图的基本使用 应用tf.Grap ...

  7. Tensorflow搭建神经网络及使用Tensorboard进行可视化

    创建神经网络模型 1.构建神经网络结构,并进行模型训练 import tensorflow as tfimport numpy as npimport matplotlib.pyplot as plt ...

  8. Tensorflow细节-P312-PROJECTOR

    首先进行数据预处理,需要生成.tsv..jpg文件 import matplotlib.pyplot as plt import numpy as np import os from tensorfl ...

  9. Tensorflow细节-P62-完整的神经网络样例程序

    这样是比较好的一个summary命名 (1)'networks'.'layer_%d' % n_layer.'weights'三个命名空间相互叠加 (2) if i % 50 == 0: result ...

随机推荐

  1. day18——re正则表达式

    day18 re模块--正则表达式 匹配方法 findall():从字符串中全部查找内容,返回一个列表 s = "meet_宝元_meet" print(re.findall(&q ...

  2. c语言 判断字符串长度 实现

    /* 首先明白答案的本质(该函数)是一个计数器该计数器用for循环来实现实现对一串字符串的计数字符串以空格开头 不计算空格 计算空格后的数字直到遇到\0结束.num计算器字符串不以空格结束 计算空格后 ...

  3. 【leetcode】501. Find Mode in Binary Search Tree

    class Solution { public: vector<int> modes; int maxCnt = 0; int curCnt = 0; int curNum = 0; ve ...

  4. SQL Server日志处理及安全访问

    1.点SQL SERVER错误日志,右键,配置,限定错误日志的数目,比如6个 限制日志增长数量 2.然后运行命令: EXEC sp_cycle_errorlog ; 这个命令的作用是将当前日志归档,然 ...

  5. pytest_01-环境准备与入门

    前言 首先说下为什么要学pytest,在此之前相信大家已经掌握了python里面的unittest单元测试框架,那再学一个框架肯定是需要学习时间成本的. 刚开始我的内心是拒绝的,我想我用unittes ...

  6. 如何获取图片上传OSS后的缩略图 超简单

    OSS是使用通过URL尾部的参数指定图片的缩放大小 图片路径后面拼接如下路径:     ?x-oss-process=image/[处理类型],x_100,y_50[宽高等参数] ?x-oss-pro ...

  7. Spring-Cloud之开篇

    一.为什么会有spring-cloud.随着现代互联网的发展,以前很多传统的单体项目将不再满足于现在的互联网需求,而这个时候就诞生了另外一种说法,微服务.简单理解就是将软件应用程序独立部署的服务的一中 ...

  8. Tomcat组件梳理—Service组件

    Tomcat组件梳理-Service组件 1.组件定义 Tomcat中只有一个Server,一个Server可以用多个Service,一个Service可以有多个Connector和一个Contain ...

  9. Java之路---Day08

    2019-10-22-22:28:39 目录 1.Static静态类 2.Static内存图 3.Static静态代码块 4.Arrays类 5.Math类 Static静态类 一旦使用static修 ...

  10. 自学Python编程的第四天----------来自苦逼的转行人

    2019-09-14 21:15:24 今天是学习Python的第四天,也是写博客的第四天 今天的内容是有关'列表'.'元组'.'range'的用法 列表:增删改查.列表的嵌套 元组:元组的嵌套 ra ...