Problem Description
The Children’s Day has passed for some days .Has you remembered something happened at your childhood? I remembered I often played a game called hide handkerchief with my friends.
Now I introduce the game to you. Suppose there are N people played the game ,who sit on the ground forming a circle ,everyone owns a box behind them .Also there is a beautiful handkerchief hid in a box which is one of the boxes .
Then Haha(a friend of mine) is called to find the handkerchief. But he has a strange habit. Each time he will search the next box which is separated by M-1 boxes from the current box. For example, there are three boxes named A,B,C, and now Haha is at place of A. now he decide the M if equal to 2, so he will search A first, then he will search the C box, for C is separated by 2-1 = 1 box B from the current box A . Then he will search the box B ,then he will search the box A.
So after three times he establishes that he can find the beautiful handkerchief. Now I will give you N and M, can you tell me that Haha is able to find the handkerchief or not. If he can, you should tell me "YES", else tell me "POOR Haha".
 
Input
There will be several test cases; each case input contains two integers N and M, which satisfy the relationship: 1<=M<=100000000 and 3<=N<=100000000. When N=-1 and M=-1 means the end of input case, and you should not process the data.
 
Output
For each input case, you should only the result that Haha can find the handkerchief or not.
 
Sample Input
3 2
-1 -1
 
Sample Output
YES

//找手绢每次跳过m-1个人去遍历n个人 转换为 m与n 是否互质

#include <cstdio>
int gcd(int n, int m)
{
int r;
while (m)
{
r = n%m;
n = m;
m = r;
}
return n;
}

int main()
{
int n, m;
while (scanf_s ("%d%d", &n, &m) && n != -1 || m != -1)
{
if (gcd(n, m) == 1)
printf("YES\n");
else
printf("POOR Haha\n");
}
return 0;

【HDOJ】2104 hide handkerchief的更多相关文章

  1. 【BZOJ1941】[Sdoi2010]Hide and Seek KDtree

    [BZOJ1941][Sdoi2010]Hide and Seek Description 小猪iPig在PKU刚上完了无聊的猪性代数课,天资聪慧的iPig被这门对他来说无比简单的课弄得非常寂寞,为了 ...

  2. 【BZOJ1095】[ZJOI2007]Hide 捉迷藏 动态树分治+堆

    [BZOJ1095][ZJOI2007]Hide 捉迷藏 Description 捉迷藏 Jiajia和Wind是一对恩爱的夫妻,并且他们有很多孩子.某天,Jiajia.Wind和孩子们决定在家里玩捉 ...

  3. 【HDOJ】4729 An Easy Problem for Elfness

    其实是求树上的路径间的数据第K大的题目.果断主席树 + LCA.初始流量是这条路径上的最小值.若a<=b,显然直接为s->t建立pipe可以使流量最优:否则,对[0, 10**4]二分得到 ...

  4. 【POJ】2104 K-th Number

    区间第K大数.主席树可解. /* 2104 */ #include <iostream> #include <sstream> #include <string> ...

  5. 【POJ】2104 K-th Number(区间k大+主席树)

    http://poj.org/problem?id=2104 裸题不说.主席树水过. #include <cstdio> #include <iostream> #includ ...

  6. 【HDOJ】【3506】Monkey Party

    DP/四边形不等式 裸题环形石子合并…… 拆环为链即可 //HDOJ 3506 #include<cmath> #include<vector> #include<cst ...

  7. 【HDOJ】【3516】Tree Construction

    DP/四边形不等式 这题跟石子合并有点像…… dp[i][j]为将第 i 个点开始的 j 个点合并的最小代价. 易知有 dp[i][j]=min{dp[i][j] , dp[i][k-i+1]+dp[ ...

  8. 【HDOJ】【3480】Division

    DP/四边形不等式 要求将一个可重集S分成M个子集,求子集的极差的平方和最小是多少…… 首先我们先将这N个数排序,容易想到每个自己都对应着这个有序数组中的一段……而不会是互相穿插着= =因为交换一下明 ...

  9. 【HDOJ】【2829】Lawrence

    DP/四边形不等式 做过POJ 1739 邮局那道题后就很容易写出动规方程: dp[i][j]=min{dp[i-1][k]+w[k+1][j]}(表示前 j 个点分成 i 块的最小代价) $w(l, ...

随机推荐

  1. QTcpSocket 对连接服务器中断的不同情况进行判定(六种情况,其中一种使用IsNetworkAlive API方法)

    简述 对于一个C/S结构的程序,客户端有些时候需要实时得知与服务器的连接状态.而对于客户端与服务器断开连接的因素很多,现在就目前遇到的情况进行一下总结. 分为下面六种不同情况 客户端网线断开 客户端网 ...

  2. Windows系统版本判定那些事儿(有图,各种情况,很清楚)

    前言 本文并不是讨论Windows操作系统的版本来历和特点,也不是讨论为什么没有Win9,而是从程序员角度讨论下Windows获取系统版本的方法和遇到的一些问题.在Win8和Win10出来之后,在获取 ...

  3. 快速开发平台 WebBuilder 8 发布

    快速开发平台  WebBuilder 8 发布 了解:http://www.putdb.com,官网:http://www.geejing.com 什么是WebBuilder? WebBuilder是 ...

  4. SPOJ130_Rent your airplane and make money_单调队列DP实现

    题意比较简单,状态转移方程也比较容易得出: f[i]=max{ f [ j ] }+p[i],(j的结束时间在i开始时间之前) 若i开始之前没有结束的j,则f[i]=p[i]; 因数据量太大(n< ...

  5. Hexo+NexT(三):Next主题配置详解

    阅读本篇之前,假定读者已经有了Node.js的基础,如需要补充Node.js知识的,请自行百度. Hexo是在Node.js框架下的一个项目,利用Node.js提供的强大功能,完成从Markdown到 ...

  6. spring 5.x 系列第12篇 —— 整合memcached (代码配置方式)

    文章目录 一.说明 1.1 XMemcached客户端说明 1.2 项目结构说明 1.3 依赖说明 二.spring 整合 memcached 2.1 单机配置 2.2 集群配置 2.3 存储基本类型 ...

  7. spring cloud 系列第7篇 —— sleuth+zipkin 服务链路追踪 (F版本)

    源码Gitub地址:https://github.com/heibaiying/spring-samples-for-all 一.简介 在微服务架构中,几乎每一个前端的请求都会经过多个服务单元协调来提 ...

  8. Singleton and Prototype Bean Scope in Spring

    Scope描述的是Spring容器如何新建Bean的实例的. 1> Singleton: 一个Spring容器只有一个Bean的实例,此为Spring的默认配置,全容器共享一个实例. 2> ...

  9. [python] 安装TensorFlow问题 解决Cannot uninstall 'wrapt'. It is a distutils installed project

    cmd安装 pip install tensorflow 1.遇到了 ERROR: Cannot uninstall 'wrapt'. It is a distutils installed proj ...

  10. Codeforces 755A:PolandBall and Hypothesis(暴力)

    http://codeforces.com/problemset/problem/755/A 题意:给出一个n,让你找一个m使得n*m+1不是素数. 思路:暴力枚举m判断即可. #include &l ...