欧拉回路
Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 18576    Accepted Submission(s): 7219
Problem Description
欧拉回路是指不令笔离开纸面,可画过图中每条边仅一次,且可以回到起点的一条回路。现给定一个图,问是否存在欧拉回路?
 
Input
测试输入包含若干测试用例。每个测试用例的第1行给出两个正整数,分别是节点数N ( 1 < N < 1000 )和边数M;随后的M行对应M条边,每行给出一对正整数,分别是该条边直接连通的两个节点的编号(节点从1到N编号)。当N为0时输入结
束。
 
Output
每个测试用例的输出占一行,若欧拉回路存在则输出1,否则输出0。
 
Sample Input
3 3
1 2
1 3
2 3
3 2
1 2
2 3
0
 
Sample Output
1
0

C/C++:

 #include <map>
#include <queue>
#include <cmath>
#include <vector>
#include <string>
#include <cstdio>
#include <cstring>
#include <climits>
#include <iostream>
#include <algorithm>
#define INF 0x3f3f3f3f
using namespace std;
const int my_max = ; int n, m, my_pre[my_max], a, b, my_node[my_max]; int my_find(int x)
{
int n = x;
while (n != my_pre[n])
n = my_pre[n];
int i = x, j;
while (n != my_pre[i])
{
j = my_pre[i];
my_pre[i] = n;
i = j;
}
return n;
} bool is_eulerian()
{
for (int i = ; i <= n; ++ i)
if (my_node[i] & ) return false;
int temp = my_find();
for (int i = ; i <= n; ++ i)
if (my_find(i) != temp) return false;
return true;
} int main()
{
while (scanf("%d", &n), n)
{
scanf("%d", &m);
memset(my_node, , sizeof(my_node));
for (int i = ; i <= n; ++ i)
my_pre[i] = i; while (m --)
{
scanf("%d%d", &a, &b);
my_node[a] ++, my_node[b] ++;
int n1 = my_find(a), n2 = my_find(b);
my_pre[n1] = n2;
} if (is_eulerian()) printf("1\n");
else printf("0\n");
}
return ;
}

hdu 1878 欧拉回路(联通<并查集> + 偶数点)的更多相关文章

  1. HDU 1811 拓扑排序 并查集

    有n个成绩,给出m个分数间的相对大小关系,问是否合法,矛盾,不完全,其中即矛盾即不完全输出矛盾的. 相对大小的关系可以看成是一个指向的条件,如此一来很容易想到拓扑模型进行拓扑排序,每次检查当前入度为0 ...

  2. hdu 6200 mustedge mustedge(并查集+树状数组 或者 LCT 缩点)

    hdu 6200 mustedge mustedge(并查集+树状数组 或者 LCT 缩点) 题意: 给一张无向连通图,有两种操作 1 u v 加一条边(u,v) 2 u v 计算u到v路径上桥的个数 ...

  3. HDU 3018 Ant Trip (并查集求连通块数+欧拉回路)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=3018 题目大意:有n个点,m条边,人们希望走完所有的路,且每条道路只能走一遍.至少要将人们分成几组. ...

  4. HDU 1878 欧拉回路(判断欧拉回路)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1878 题目大意:欧拉回路是指不令笔离开纸面,可画过图中每条边仅一次,且可以回到起点的一条回路.现给定一 ...

  5. HDU 1878 欧拉回路

    并查集水题. 一个图存在欧拉回路的判断条件: 无向图存在欧拉回路的充要条件 一个无向图存在欧拉回路,当且仅当该图所有顶点度数都是偶数且该图是连通图. 有向图存在欧拉回路的充要条件 一个有向图存在欧拉回 ...

  6. Hdu 5458 Stability (LCA + 并查集 + 树状数组 + 缩点)

    题目链接: Hdu 5458 Stability 题目描述: 给出一个还有环和重边的图G,对图G有两种操作: 1 u v, 删除u与v之间的一天边 (保证这个边一定存在) 2 u v, 查询u到v的路 ...

  7. HDU 1878 欧拉回路 图论

    解题报告:题目大意,给出一个无向图,判断图中是否存在欧拉回路. 判断一个无向图中是否有欧拉回路有一个充要条件,就是这个图中不存在奇度定点,然后还要判断的就是连通分支数是否为1,即这个图是不是连通的,这 ...

  8. <hdu - 1232> 畅通工程 并查集问题 (注意中的细节)

    本题链接:http://acm.hdu.edu.cn/showproblem.php?pid=1232  结题思路:因为题目是汉语的,那我就不解释题意了,要求的是最少建设的道路,我们可以用并查集来做这 ...

  9. HDU - 4496 City 逆向并查集

    思路:逆向并查集,逆向加入每一条边即可.在获取联通块数量的时候,直接判断新加入的边是否合并了两个集合,如果合并了说明联通块会减少一个,否则不变. AC代码 #include <cstdio> ...

  10. HDU 5441 Travel(并查集+统计节点个数)

    http://acm.hdu.edu.cn/showproblem.php?pid=5441 题意:给出一个图,每条边有一个距离,现在有多个询问,每个询问有一个距离值d,对于每一个询问,计算出有多少点 ...

随机推荐

  1. DeCantor Expansion (逆康托展开)

    Background\text{Background}Background The \text{The }The Listen&Say Test will be hold on May 11, ...

  2. MVC路径无匹配或请求api版本过低时处理

    解决方案:RequestMappingHandlerMapping中重写handleNoMatch方法,springMVC和springboot中配置无区别. 另: 1.可搭配advice处理抛出的异 ...

  3. 【Spring Cloud】全家桶介绍(一)

    一.微服务架构 1.微服务架构简介 1.1.分布式:不同的功能模块部署在不同的服务器上,减轻网站高并发带来的压力. 1.2.集群:多台服务器上部署相同应用构成一个集群,通过负载均衡共同向外提供服务. ...

  4. chrome devtools tip(2)--自定义代码片段,构建你的工具箱

    平常开发中,有些代码片段常常用到的,比如,获取 url 参数,rgb转16进制,打印下当前页面的性能数据,给所有的 span 加个样式, 防抖节流,fetch接口,类似 jquery这样的顺手 选择 ...

  5. Vue系列---理解Vue.nextTick使用及源码分析(五)

    _ 阅读目录 一. 什么是Vue.nextTick()? 二. Vue.nextTick()方法的应用场景有哪些? 2.1 更改数据后,进行节点DOM操作. 2.2 在created生命周期中进行DO ...

  6. day10整理(面对对象,过程,类和对象)

    目录 一 回顾 (一)定义函数 (二)定义函数的三种形式 1.空函数 2.有参函数 3.无参函数 (三)函数的返回值 (四)函数的参数 1.形参 2.实参 二 面向过程编程 三 面向对象过程 四 类和 ...

  7. java中的Static、final、Static final各种用法详解

    前言 对Static.final.Static final这几个关键词熟悉又陌生?想说却又不知怎么准确说出口?好的,本篇博客文章将简短概要出他们之间的各自的使用,希望各位要是被你的面试官问到了,也能从 ...

  8. ArangoDB安装方法整理

    目录 方法一:镜像安装 方法二:离线安装 方法三:在线安装 启动与停止服务 一.镜像安装(推荐方法) 安装docker 安装方法参见docker安装方法整理. 安装arangodb镜像: docker ...

  9. 持续集成学习6 jenkins自动化代码构建

    一.实验目标 二.配置 1.配置mvn构建 [root@node1 ~]# wget https://mirrors.tuna.tsinghua.edu.cn/apache/maven/maven-3 ...

  10. 《JavaScript设计模式与开发实践》-- 迭代器模式

    详情个人博客:https://shengchangwei.github.io/js-shejimoshi-diedaiqi/ 迭代器模式 1.定义 迭代器模式: 是指提供一种方法顺序访问一个聚合对象中 ...