Paper | A Pseudo-Blind Convolutional Neural Network for the Reduction of Compression Artifacts
发表在2019年TCSVT。
本文提出了一个兼具 预测压缩系数 和 非盲去压缩失真 功能的 伪-盲(pseudo-blind)去压缩失真网络。该网络是在Inception的基础上修改的,并加上了一个 压缩系数预测子网络。
这篇文章的Introduction、相关工作回顾、失真成因都写得很一般,我们看个方法就好。
值得一提的是,这可能是第一篇尝试“盲”QP增强论文,但是!作者准备了4个增强网络,应对4种预测QP。因此严格意义上不是盲的。
非盲增强网络结构
整体上看:

局部的Inception module:

训练目标
最小化\(L_1\)损失。
在HEVC下的4种QP:34、37、42、47训练了4个网络。
压缩系数预测子网络
网络结构
这是一个19层、\(3 \times 3\)卷积的VGG网络,参数量高达5.8M。
根据块QP判决结果得到帧QP预测结果
注意,我们不适用平滑区域的块。原因是:这些块的判决结果非常不稳定,很难反映QP信息。因此我们提取具有丰富纹理的块。
当判断该帧的QP时,我们取 50个 判决结果最悬殊的块 的结果。即分类器置信度最高的前50个块 的结果。然后voting得到最终预测QP。
保持时序连续性
为了保证帧间QP具有一定的连续性,作者考虑了软判决。具体策略看论文。
最终大网络就是这个样子,很简单都不需要多解释:

实验
我们只看分类器的准确率:

Paper | A Pseudo-Blind Convolutional Neural Network for the Reduction of Compression Artifacts的更多相关文章
- 读paper:Deep Convolutional Neural Network using Triplets of Faces, Deep Ensemble, andScore-level Fusion for Face Recognition
今天给大家带来一篇来自CVPR 2017关于人脸识别的文章. 文章题目:Deep Convolutional Neural Network using Triplets of Faces, Deep ...
- A NEW HYPERSPECTRAL BAND SELECTION APPROACH BASED ON CONVOLUTIONAL NEURAL NETWORK文章笔记
A NEW HYPERSPECTRAL BAND SELECTION APPROACH BASED ON CONVOLUTIONAL NEURAL NETWORK 文章地址:https://ieeex ...
- 《Kalchbrenner N, Grefenstette E, Blunsom P. A convolutional neural network for modelling sentences》
Kalchbrenner’s Paper Kal的这篇文章引用次数较高,他提出了一种名为DCNN(Dynamic Convolutional Neural Network)的网络模型,在上一篇(Kim ...
- ASPLOS'17论文导读——SC-DCNN: Highly-Scalable Deep Convolutional Neural Network using Stochastic Computing
今年去参加了ASPLOS 2017大会,这个会议总体来说我感觉偏系统和偏软一点,涉及硬件的相对少一些,对我这个喜欢算法以及硬件架构的菜鸟来说并不算非常契合.中间记录了几篇相对比较有趣的paper,今天 ...
- Relation-Shape Convolutional Neural Network for Point Cloud Analysis(CVPR 2019)
代码:https://github.com/Yochengliu/Relation-Shape-CNN 文章:https://arxiv.org/abs/1904.07601 作者直播:https:/ ...
- 【RS】Automatic recommendation technology for learning resources with convolutional neural network - 基于卷积神经网络的学习资源自动推荐技术
[论文标题]Automatic recommendation technology for learning resources with convolutional neural network ( ...
- 1 - ImageNet Classification with Deep Convolutional Neural Network (阅读翻译)
ImageNet Classification with Deep Convolutional Neural Network 利用深度卷积神经网络进行ImageNet分类 Abstract We tr ...
- 论文笔记:(CVPR2019)Relation-Shape Convolutional Neural Network for Point Cloud Analysis
目录 摘要 一.引言 二.相关工作 基于视图和体素的方法 点云上的深度学习 相关性学习 三.形状意识表示学习 3.1关系-形状卷积 建模 经典CNN的局限性 变换:从关系中学习 通道提升映射 3.2性 ...
- 论文翻译:2020_FLGCNN: A novel fully convolutional neural network for end-to-end monaural speech enhancement with utterance-based objective functions
论文地址:FLGCNN:一种新颖的全卷积神经网络,用于基于话语的目标函数的端到端单耳语音增强 论文代码:https://github.com/LXP-Never/FLGCCRN(非官方复现) 引用格式 ...
随机推荐
- Java并发编程:Java中的锁和线程同步机制
锁的基础知识 锁的类型 锁从宏观上分类,只分为两种:悲观锁与乐观锁. 乐观锁 乐观锁是一种乐观思想,即认为读多写少,遇到并发写的可能性低,每次去拿数据的时候都认为别人不会修改,所以不会上锁,但是在更新 ...
- 暑期班--JAVA无敌课程---第一天-Day01-----Java基础
1.Java发展历史 1.1Games Golsing Java创始人 2.What is JDK 3.记本本开发第一个Java程序 巴拉巴拉 巴拉巴拉 巴拉巴拉 巴拉巴拉 巴拉巴拉 巴拉巴拉 巴拉巴 ...
- 1+X证书web前端开发中级对应课程分析
官方QQ群 1+x 证书 Web 前端开发 JavaScript 专项练习 http://blog.zh66.club/index.php/archives/198/ 1+x 证书 Web 前端开发初 ...
- 当接口请求体里的日期格式跟web页面日期格式不一致时,该如何处理呢?
首先引入Unix纪元时间戳的概念:即格林威治时间(GMT,Greenwich Mean Time)1970年1月1日00:00:00,到当前时间的秒数.单位为秒(s). 那么当前时间的Unix纪元时间 ...
- Bag of Tricks for Image Classification with Convolutional Neural Networks
这篇文章来自李沐大神团队,使用各种CNN tricks,将原始的resnet在imagenet上提升了四个点.记录一下,可以用到自己的网络上.如果图片显示不了,点击链接观看 baseline mode ...
- C# delegate multicast single delegate
using System; using System.Collections.Generic; using System.Linq; using System.Runtime.Serializatio ...
- python基础(16):内置函数(二)
1. lamda匿名函数 为了解决⼀些简单的需求⽽设计的⼀句话函数 # 计算n的n次⽅ def func(n): return n**n print(func(10)) f = lambda n: n ...
- JS基础语法---分支语句总结
分支语句: if语句:一个分支 if-else语句:两个分支,最终只执行一个分支 if-else if-else if...语句: 多个分支,也是只会执行一个 switch-case语句:多分支语句, ...
- Python “ValueError: incomplete format” upon print(“stuff %” % “thingy”) 解决方法
直接贴代码 这里我是想匹配length i 的值并且要打印出data里面%23也就是#的url编码,但是发现这样报错了,这时候我们在%23前面多加一个%号就能够成功执行我这里测试的2.7环境,3.x ...
- iOS常用宏定义--实用
在这里给大家分享一些常用的宏定义,喜欢的小伙伴可以直接在项目中使用(持续更新)!为了大家使用方便,请点击GitHub - 宏定义头文件下载 ! 1.获取屏幕宽度与高度 #define SCREEN_W ...