Python 教你识别淘宝刷单,买到称心如意的商品
发际线堪忧的小 Q,为了守住头发最后的尊严,深入分析了几十款防脱洗发水的评价,最后综合选了一款他认为最完美的防脱洗发水。
一星期后,他没察觉到任何变化。
一个月后,他用卷尺量了量,发际线竟然后退了 0.5cm!难道防脱要经历一个物极必反的过程,先脱再长?小 Q 不甘心,决定继续坚持。
两个月后,小 Q 心如死灰,忍不住和小 Z 抱怨。
这句话,平地一惊雷,炸出了小 Q 惨痛的网购回忆。
他,屡屡冲着卖家秀而去,却屡屡化身买家秀而归。
说好的椰子!?
我想买两个杯子来着,怎么变成了一个!?
小 Q 曾经因为网购吃亏太多,而为自己的颜值和智商担忧。但经过小 Z 的点拨,他认定了一件事:活成卖家秀,并不是自身的问题,而是万恶的假评价误导了自己的消费决策。
为了自己,为了让更多的朋友免受误导,他和小 Z 一拍即合,决定用数据思维来鉴定刷单。
经过一番翻云覆雨,终于总结出了用数据鉴定刷单的两板斧。
第一板斧:评销比
购买——使用——评价是一个完整的购后链路。消费者在购买了产品之后,一定会使用,但评价则需要一定场景来触发。
比如这个产品超出预期,我要感谢卖家!或者这个产品在侮辱我的智商,我要骂街!
当然,还存在一部分为了刷积分而评价的人,不过正常情况下,主动评论的人占总人数的比重是维持在稳定水平的。
如果有通过大规模红包返现或其他人为手段刷的好评,在同样购买人数的前提下,参与评价的人大概率是高于正常的。
怎么衡量这个比例是否合理呢?这里,我们引入一个叫做评销比的指标。
评销比 = 单款产品总评论数 / 单款产品总销量 * 100,以此来衡量平均每卖出 100 单位的产品,对应着多少条评价。
接下来,我们导入爬取的脱敏真实数据(为了去重广告嫌疑脱的敏)来实践一下:
增加一列计算评销比:
看看评销比分布形态,数据在 20 左右分散开来,略微偏右:
从评销比分布图,可以看出在 40 处有二次下跌,我们暂且把 40(一般也可以尝试平均值)设置为一个筛选阈值,高于阈值的判定为有刷单嫌疑。
第一版斧挥过,12% 疑似刷单的产品应声倒下,小 Z 露出了欣慰的微笑。
小 Q 却眉头紧锁:“这个鉴定逻辑是有一定道理,但是,我买的那款洗发水竟然逃过了筛选!”
不要慌,我们还有第二板斧保驾护航。
第二板斧:内容重复度
第二板斧整个判别逻辑极其简单粗暴:对于一款产品,如果存在不同的用户,在不同的时间,评论了相同的内容,那妥妥的是刷啊!
直接上案例数据,我们爬取了小 Q 购买的那款防脱洗发水评价,共计1706条:
为了让鉴别更加科学,先换位思考:除极端情绪外,我们自己在评论时总会用“还行”、“一般般”、“刚收到,还没用”等短评来敷衍。这些短评非常容易重复,但也不能说是刷的评价。
so,我们在用重复度鉴别时,可以先预设一个评论长度作为筛选标准,比如只对超过 15 个字的评论进行重复度匹配:
长度筛选之后,正好还剩下 1200 条评价,下面开始正式匹配。大家如果想更精细,可以考虑用文本挖掘等高阶方法,在这里我们用最最最简单粗暴的文本排序:
前 6 条评价,有 3 个不同的客户,分别在 19 年的 10 月 16 日、24 日和 21 日发表了相同的内容,他们都受高考压力影响,脱发严重,每天房间、床铺、地上掉满他们的头发。
幸好!!!他们在秃顶前遇到了这款洗发水!用了几次不仅比之前掉的少,还新长出来了一些小碎发!
177 个字,洋洋洒洒,令人动容!
但这到底是偶然的巧合还是有组织刷的评价呢?我们不能这么简单下定论。
继续看一看,这些长篇大论一字不差的重复评论有多少条:
注:A、B、C 三条内容完全一样,则统计为 3 条重复评价
1200 条超过 15 个字的评价,有 378 条是虚伪的,占比高达 31.5%。
他们文风多变,除了“高考压力”,还有“为父分忧而买”、也有“被微博广告安利”、甚至有“担心被骗,用第二套才敢评价的”。
可谓情真而意切,感人而至深!
小 Z 看过评价,深深不能自拔,瞬间理解了小 Q 为什么被忽悠。
“你跺你也麻啊!”
幸好,以后有了这两板斧保驾护航,再也不用担心这些虚评假意了。
发际线堪忧的小 Q,为了守住头发最后的尊严,深入分析了几十款防脱洗发水的评价,最后综合选了一款他认为最完美的防脱洗发水。
一星期后,他没察觉到任何变化。
一个月后,他用卷尺量了量,发际线竟然后退了 0.5cm!难道防脱要经历一个物极必反的过程,先脱再长?小 Q 不甘心,决定继续坚持。
两个月后,小 Q 心如死灰,忍不住和小 Z 抱怨。
这句话,平地一惊雷,炸出了小 Q 惨痛的网购回忆。
他,屡屡冲着卖家秀而去,却屡屡化身买家秀而归。
说好的椰子!?
我想买两个杯子来着,怎么变成了一个!?
小 Q 曾经因为网购吃亏太多,而为自己的颜值和智商担忧。但经过小 Z 的点拨,他认定了一件事:活成卖家秀,并不是自身的问题,而是万恶的假评价误导了自己的消费决策。
为了自己,为了让更多的朋友免受误导,他和小 Z 一拍即合,决定用数据思维来鉴定刷单。
经过一番翻云覆雨,终于总结出了用数据鉴定刷单的两板斧。
第一板斧:评销比
购买——使用——评价是一个完整的购后链路。消费者在购买了产品之后,一定会使用,但评价则需要一定场景来触发。
比如这个产品超出预期,我要感谢卖家!或者这个产品在侮辱我的智商,我要骂街!
当然,还存在一部分为了刷积分而评价的人,不过正常情况下,主动评论的人占总人数的比重是维持在稳定水平的。
如果有通过大规模红包返现或其他人为手段刷的好评,在同样购买人数的前提下,参与评价的人大概率是高于正常的。
怎么衡量这个比例是否合理呢?这里,我们引入一个叫做评销比的指标。
评销比 = 单款产品总评论数 / 单款产品总销量 * 100,以此来衡量平均每卖出 100 单位的产品,对应着多少条评价。
接下来,我们导入爬取的脱敏真实数据(为了去重广告嫌疑脱的敏)来实践一下:
增加一列计算评销比:
看看评销比分布形态,数据在 20 左右分散开来,略微偏右:
从评销比分布图,可以看出在 40 处有二次下跌,我们暂且把 40(一般也可以尝试平均值)设置为一个筛选阈值,高于阈值的判定为有刷单嫌疑。
第一版斧挥过,12% 疑似刷单的产品应声倒下,小 Z 露出了欣慰的微笑。
小 Q 却眉头紧锁:“这个鉴定逻辑是有一定道理,但是,我买的那款洗发水竟然逃过了筛选!”
不要慌,我们还有第二板斧保驾护航。
第二板斧:内容重复度
第二板斧整个判别逻辑极其简单粗暴:对于一款产品,如果存在不同的用户,在不同的时间,评论了相同的内容,那妥妥的是刷啊!
直接上案例数据,我们爬取了小 Q 购买的那款防脱洗发水评价,共计1706条:
为了让鉴别更加科学,先换位思考:除极端情绪外,我们自己在评论时总会用“还行”、“一般般”、“刚收到,还没用”等短评来敷衍。这些短评非常容易重复,但也不能说是刷的评价。
so,我们在用重复度鉴别时,可以先预设一个评论长度作为筛选标准,比如只对超过 15 个字的评论进行重复度匹配:
长度筛选之后,正好还剩下 1200 条评价,下面开始正式匹配。大家如果想更精细,可以考虑用文本挖掘等高阶方法,在这里我们用最最最简单粗暴的文本排序:
前 6 条评价,有 3 个不同的客户,分别在 19 年的 10 月 16 日、24 日和 21 日发表了相同的内容,他们都受高考压力影响,脱发严重,每天房间、床铺、地上掉满他们的头发。
幸好!!!他们在秃顶前遇到了这款洗发水!用了几次不仅比之前掉的少,还新长出来了一些小碎发!
177 个字,洋洋洒洒,令人动容!
但这到底是偶然的巧合还是有组织刷的评价呢?我们不能这么简单下定论。
继续看一看,这些长篇大论一字不差的重复评论有多少条:
注:A、B、C 三条内容完全一样,则统计为 3 条重复评价
1200 条超过 15 个字的评价,有 378 条是虚伪的,占比高达 31.5%。
他们文风多变,除了“高考压力”,还有“为父分忧而买”、也有“被微博广告安利”、甚至有“担心被骗,用第二套才敢评价的”。
可谓情真而意切,感人而至深!
小 Z 看过评价,深深不能自拔,瞬间理解了小 Q 为什么被忽悠。
“你跺你也麻啊!”
幸好,以后有了这两板斧保驾护航,再也不用担心这些虚评假意了。
Python 教你识别淘宝刷单,买到称心如意的商品的更多相关文章
- 两个月淘宝刷单,连续死N次血泪史 (转)
两个月淘宝刷单,连续死N次血泪史 派代网 2014/10/13 刷单 分享到:3 [思路网注] 看来是靠刷流量刷销量是行不通了,点击率与展现无法匹配,这是致命的!!那么,贵就贵点,直通车来吧!!再删宝 ...
- python:爬虫获取淘宝/天猫的商品信息
[需求]输入关键字,如书包,可以搜索出对应商品的信息,包括:商品标题.商品链接.价格范围:且最终的商品信息需要符合:包邮.价格差不会超过某数值 #coding=utf-8 ""&q ...
- 用Python完成毫秒级抢单,助你秒杀淘宝大单
目录: 引言 环境 需求分析&前期准备 淘宝购物流程回顾 秒杀的实现 代码梳理 总结 0 引言 年中购物618大狂欢开始了,各大电商又开始了大力度的折扣促销,我们的小胖又给大家谋了一波福利,淘 ...
- Python模拟简易版淘宝客服机器人
对于用Python制作一个简易版的淘宝客服机器人,大概思路是:首先从数据库中用sql语句获取相关数据信息并将其封装成函数,然后定义机器问答的主体函数,对于问题的识别可以利用正则表达式来进行分析,结合现 ...
- 利用Python爬虫爬取淘宝商品做数据挖掘分析实战篇,超详细教程
项目内容 本案例选择>> 商品类目:沙发: 数量:共100页 4400个商品: 筛选条件:天猫.销量从高到低.价格500元以上. 项目目的 1. 对商品标题进行文本分析 词云可视化 2. ...
- python(27) 抓取淘宝买家秀
selenium 是Web应用测试工具,可以利用selenium和python,以及chromedriver等工具实现一些动态加密网站的抓取.本文利用这些工具抓取淘宝内衣评价买家秀图片. 准备工作 下 ...
- Appium+python自动化3-启动淘宝app
前言 前面两篇环境已经搭建好了,接下来就是需要启动APP,如何启动app呢?首先要获取包名,然后获取launcherActivity.获取这两个关键东西的方法很多,这里就不一一多说,小伙伴们可以各显神 ...
- 【python】抄写爬淘宝已买到的宝贝的代码
教程地址:http://cuiqingcai.com/1076.html 这一篇掌握的不好.虽然代码可以跑,但是里面的很多东西都一知半解.需要有空的时候系统整理. 原代码中的正则表达式已经失效了,我自 ...
- Python 002- 爬虫爬取淘宝上耳机的信息
参照:https://mp.weixin.qq.com/s/gwzym3Za-qQAiEnVP2eYjQ 一般看源码就可以解决问题啦 #-*- coding:utf-8 -*- import re i ...
随机推荐
- zabbix 安装部署
环境:CentOS7 机器 两台 分别为server 和 client zabbix下载网址:http://repo.zabbix.com 本次操作使用zabbix4.0 网址:http://rep ...
- css设置使文字显示2行多余的为省略号。。。
.title{ font-size: .7rem; line-height: 1.5rem; overflow: hidden; /** 隐藏超出的内容 **/ word-break: break-a ...
- go 利用chan的阻塞机制,实现协程的开始、阻塞、返回控制器
一.使用场景 大背景是从kafka 中读取oplog进行增量处理,但是当我想发一条命令将这个增量过程阻塞,然后开始进行一次全量同步之后,在开始继续增量. 所以需要对多个协程进行控制. 二.使用知识 1 ...
- c语言入门到精通怎么能少了这7本书籍?
C语言作为学编程最好的入门语言,对一个初进程序大门的小白来说是很有帮助的,学习编程能培养一个人的逻辑思维,而C语言则是公认的最符合人们对程序的认知的一款计算机语言,很多大学都选择了使用C语言作为大学生 ...
- NLP(十八)利用ALBERT提升模型预测速度的一次尝试
前沿 在文章NLP(十七)利用tensorflow-serving部署kashgari模型中,笔者介绍了如何利用tensorflow-serving部署来部署深度模型模型,在那篇文章中,笔者利用k ...
- java打字游戏-一款快速提升java程序员打字速度的游戏(附源码)
一.效果如图: 源码地址:https://gitee.com/hoosson/TYPER 纯干货,别忘了留个赞哦!
- 从零开始的vue学习笔记(三)
事件处理 v-on 指令监听 DOM 事件,并在触发时运行一些 JavaScript 代码,示例: <div id="example-2"> <!-- `gree ...
- 用Python6种方法:给定一个不超过5位的正整数,判断有几位
方法一:作比较 a=int(input(">>>>")) if a<10: print(1) elif a<100: #第一个条件已经过滤了大于 ...
- [转]UiPath Installing the Firefox Extension
本文转自:https://docs.uipath.com/studio/lang-en/v2019/docs/installing-the-firefox-extension From UiPath ...
- Android五大布局详解——RelativeLayout(相对布局)
RelativeLayout 接着上一篇,本篇我将介绍RelativeLayout(相对布局)的一些知识点. RelativeLayout 这是一个非常常用的布局,相比于上节所学到的LinearLay ...