由题开始==

例题:求在一棵有权树上,是否存在一条路径满足权值和为K

解法:以每个点为根一次,看在他的子树间是否存在两段,其和为K;O(==)

和例题一样,对于树上问题,求某些要求的路径(数量或者存在性等),

往往可以先对一条经过根节点的路径操作,

后再删去这个根,对他的子树们同样的操作

显然是一个分治过程

原理就是,一条路径,要么是由一个点经过根节点,与其他子树内的节点形成;

要么就是只在这棵子树内形成路径

大概图示意思(红绿为两条上述路径)



<

当我们的树比较平衡时,每个点被路径计算是$ logn $ 的,但是当树是一条链的时候,就退化成$ n^2 $ 了

为了避免这种情况,可以用树的重心代替,成为新的根。此时总复杂度为$ O (nlogn) 。$

原因就是,一棵树,怎么为根都还是一颗树,但是以重心为根的时候,这颗树是最好看的最平衡的

rt,将链按箭头提起来:





这看向去更像是一棵树

所以

总结一下

一棵树先确定他的重心,以重心为根,确定经过根节点的路径;再把根节点删掉,对于删掉他的子树们,按上述同样操作;

已证$ O(nlogn) $。

luogu模板题代码仅供参考,不解释。

#include<bits/stdc++.h>
using namespace std;
const int N = 1e4+50;
const int K = 1e7+50;
int n,m;
struct node{int next,to,dis;}edge[N<<1];
int head[N],cnt;
inline void add(int from,int to,int dis) {
edge[++cnt].to=to,edge[cnt].dis=dis,edge[cnt].next=head[from],head[from]=cnt;
}
int q[N],ans[N],maxp[N],size[N],visited[N],tmp[N],dis[N],judge[K];
int rt,sum,tot;
void getrt(int u,int f) {
size[u]=1,maxp[u]=0;
for(int i=head[u];i;i=edge[i].next) {
int v=edge[i].to;if(v==f||visited[v]) continue;
getrt(v,u);
size[u]+=size[v];maxp[u]=max(maxp[u],size[v]);
}
maxp[u]=max(maxp[u],sum-maxp[u]);
if(maxp[u]<maxp[rt]) rt=u;//要求最大的最小
}
void getdis(int u,int f) {
tmp[++tot]=dis[u];
for(int i=head[u];i;i=edge[i].next) {
int v=edge[i].to;if(v==f||visited[v]) continue;
dis[v]=dis[u]+edge[i].dis; getdis(v,u);
}
}
queue<int> que;
void solve(int u) {
for(int i=head[u];i;i=edge[i].next) {
int v=edge[i].to;if(visited[v]) continue;
dis[v]=edge[i].dis;
tot=0;getdis(v,u);
for(int j=1;j<=tot;j++)
for(int k=1;k<=m;k++)
if(q[k]>=tmp[j])
ans[k]|=judge[q[k]-tmp[j]];
for(int j=1;j<=tot;j++) que.push(tmp[j]),judge[tmp[j]]=1;
}
while(!que.empty()) judge[que.front()]=0,que.pop();//数组过大,memset超时
}
void divide(int u) {
judge[0]=visited[u]=1;solve(u);
for(int i=head[u];i;i=edge[i].next) {
int v=edge[i].to;if(visited[v]) continue;
maxp[rt=0]=sum=size[v];
getrt(v,0),getrt(rt,0);
divide(rt);
}
}
int main() {
cin>>n>>m;
for(int i=1;i<n;i++) { int a,b,c;scanf("%d%d%d",&a,&b,&c);add(a,b,c),add(b,a,c);}
for(int i=1;i<=m;i++) scanf("%d",q+i);
maxp[rt=0]=sum=n;//初始化
getrt(1,0),getrt(rt,0);//找重心
divide(rt);//点分治
for(int i=1;i<=m;i++) if(ans[i]) puts("AYE");else puts("NAY");
return 0;
}

skkyk:点分治的更多相关文章

  1. [bzoj2152][聪聪和可可] (点分治+概率)

    Description 聪聪和可可是兄弟俩,他们俩经常为了一些琐事打起来,例如家中只剩下最后一根冰棍而两人都想吃.两个人都想玩儿电脑(可是他们家只有一台电脑)……遇到这种问题,一般情况下石头剪刀布就好 ...

  2. POJ 2965. The Pilots Brothers' refrigerator 枚举or爆搜or分治

    The Pilots Brothers' refrigerator Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 22286 ...

  3. [poj1741][tree] (树/点分治)

    Description Give a tree with n vertices,each edge has a length(positive integer less than 1001). Def ...

  4. 【教程】简易CDQ分治教程&学习笔记

    前言 辣鸡蒟蒻__stdcall终于会CDQ分治啦!       CDQ分治是我们处理各类问题的重要武器.它的优势在于可以顶替复杂的高级数据结构,而且常数比较小:缺点在于必须离线操作. CDQ分治的基 ...

  5. BZOJ 3262 陌上花开 ——CDQ分治

    [题目分析] 多维问题,我们可以按照其中一维排序,然后把这一维抽象的改为时间. 然后剩下两维,就像简单题那样,排序一维,树状数组一维,按照时间分治即可. 挺有套路的一种算法. 时间的抽象很巧妙. 同种 ...

  6. BZOJ 1176 [Balkan2007]Mokia ——CDQ分治

    [题目分析] 同BZOJ2683,只需要提前处理s对结果的影响即可. CDQ的思路还是很清晰的. 排序解决一维, 分治时间, 树状数组解决一维. 复杂度是两个log [代码] #include < ...

  7. BZOJ 2683 简单题 ——CDQ分治

    [题目分析] 感觉CDQ分治和整体二分有着很本质的区别. 为什么还有许多人把他们放在一起,也许是因为代码很像吧. CDQ分治最重要的是加入了时间对答案的影响,x,y,t三个条件. 排序解决了x ,分治 ...

  8. HDU5977 Garden of Eden(树的点分治)

    题目 Source http://acm.hdu.edu.cn/showproblem.php?pid=5977 Description When God made the first man, he ...

  9. Tsinsen A1493 城市规划(DP + CDQ分治 + NTT)

    题目 Source http://www.tsinsen.com/A1493 Description 刚刚解决完电力网络的问题, 阿狸又被领导的任务给难住了. 刚才说过, 阿狸的国家有n个城市, 现在 ...

随机推荐

  1. springboot传值踩坑

    由于我现在写的项目都是前后端分离的,前端用的是vue,后端springboot,于是前后端传值的问题就是一个比较重要的问题,为此我还特意去学了一下vue的传值,其实就是用一个axios组件,其实就是基 ...

  2. 在服务器的tomcat中部署手机apk项目,浏览器或手机下载不能根据URL下载和安装apk文件

    Android的APK包不能下载或安装,需在tomcat的web.xml加入 <mime-mapping>        <extension>apk</extensio ...

  3. Spring Boot Mybatis 最基本使用mysql存储过程

    首先声明:只是用最简单的方法大致了解如何用存储过程开发,如果需要查看存储过程创建语法的自行百度搜索 一.首先创建最基本的数据库 CREATE TABLE `t_user` ( `id` varchar ...

  4. FAQ: Oracle Flex ASM 12c / 12.1 (Doc ID 1573137.1)

    FAQ: Oracle Flex ASM 12c / 12.1 (Doc ID 1573137.1) APPLIES TO: Oracle Database - Enterprise Edition ...

  5. MySQL数据库:group分组

    group by:分组 GroupBy语句从英文的字面意义上理解就是"根据(by)一定的规则进行分组(Group)".它的作用是通过一定的规则将一个数据集划分成若干个小的区域,然后 ...

  6. pytest系列(四)- pytest+allure+jenkins - 持续集成平台生成allure报告

    pytest是什么 pytest是python的一款测试框架,拥有unittest的功能并比它更丰富. allure是什么 有非常多的优秀的测试框架,但却是有非常少优秀的报告工具可以展示非常清楚的用例 ...

  7. Leaving Google for a couple of devices-Kasper Lund

    原文链接https://medium.com/@kasper.lund/building-for-billions-bcb48814d864 一年多以前,我辞去了我在Google的出色工作,离开了一群 ...

  8. canvas应用

    <!doctype html> <html> <head> <meta charset="utf-8"> <title> ...

  9. 信号处理函数陷阱:调用malloc导致死锁[转]

    概览 因malloc是加锁的,上网了解的相关信息,额外了解到信号处理规范使用,mark 正文 在执行malloc的过程中,跳转到了信号处理函数中.而信号处理函数在调用某个系统api时,内部又调用了ma ...

  10. 【使用篇二】Quartz自动化配置集成(17)

    出处:https://www.jianshu.com/p/49133c107143 定时任务在企业项目比较常用到,几乎所有的项目都会牵扯该功能模块,定时任务一般会处理指定时间点执行某一些业务逻辑.间隔 ...