Java 中的 Map 是一种键值对映射,又被称为符号表字典的数据结构,通常使用哈希表来实现,但也可使用二叉查找树红黑树实现。

  • HashMap 基于哈希表,但迭代时不是插入顺序
  • LinkedHashMap 扩展了 HashMap,维护了一个贯穿所有元素的双向链表,保证按插入顺序迭代
  • TreeMap 基于红黑树,保证有序性,迭代时按大小的排序顺序

这里就来分析下 TreeMap 的实现。基于红黑树,就意味着结点的增删改查都能在 O(lgn) 时间复杂度内完成,如果按树的中序遍历就能得到一个按 键-key 大小排序的序列。

在看本文之前,建议看一下《红黑树这个数据结构,让你又爱又恨?看了这篇,妥妥的征服它》对红黑树的分析,理解了红黑树,你会发现 TreeMap 如此简单。

基本结构

TreeMap 的继承结构如下,其中包含了一些关键字段和方法:

其中,相关字段的意义是:

  • Comparator - 不为空,那么就用它维持 key-键 的有序,否则使用 key-键 的自然顺序
  • size - 记录树中结点的个数
  • modCount - 记录树结构变化次数,用于迭代器的快速失败

另一个字段是 Entry<K,V> root ,它表示根结点,初始为空,树结点的结构定义如下:

static final class Entry<K,V> implements Map.Entry<K,V> {
K key;
V value;
Entry<K,V> left; // 左孩子结点
Entry<K,V> right; // 右孩子结点
Entry<K,V> parent; // 父结点
// 默认结点为黑色(在平衡操作时会先变成红色)
boolean color = BLACK; // 创建一个无孩子的,黑色的结点
Entry(K key, V value, Entry<K,V> parent) { ... }
...
}

TreeMap 是按照算法导论(CLR)的描述实现的,但略有不同,它没有使用隐形叶子结点 NIL,而是定义了一组访问方法来正确处理 NULL 叶子节点 的问题,用于避免在主算法中因检查空叶子结点引起的混乱,方法如下:

  • colorOf(Entry<K,V> p): 返回结点颜色,如果为空返回黑色
  • parentOf(Entry<K,V> p): 返回父结点的引用,根结点则返回 null
  • setColor(Entry<K,V> p, boolean c): 设置结点颜色
  • leftOf(Entry<K,V> p): 返回左孩子结点
  • rightOf(Entry<K,V> p): 返回右孩子结点
  • rotateLeft(Entry<K,V> p): 将结点 P 左旋转
  • rotateRight(Entry<K,V> p): 将结点 P 右旋转
  • fixAfterInsertion(Entry<K,V> x): 插入结点后的回调方法,重新平衡
  • fixAfterDeletion(Entry<K,V> x): 删除结点后的回调方法,重新平衡

这些方法基本上都能见名知意,其中有点绕的就是树旋转的代码,代码实现如下:

插入

结点的插入可能会打破红黑树的平衡,需要做旋转和颜色变换的调整。假设待插入结点为 NPN 的父结点,GN 的祖父结点,UN 的叔叔结点(即父结点的兄弟结点),那么红黑树有以下几种插入情况:

  1. N 是根结点,即红黑树的第一个结点
  2. N 的父结点(P)为黑色
  3. P红色的(不是根结点),它的兄弟结点 U 也是红色
  4. P红色,而 U黑色

    4.1 P 左(右)孩子 N 右(左)孩子

    4.2 P 左(右)孩子 N 左(右)孩子

以上情况的分析可查看本文开头的文章链接,现在来看下 TreeMap 的 put 方法的实现:

public V put(K key, V value) {
Entry<K,V> t = root;
// 情况 1 - 空树,直接插入作为根结点
if (t == null) {
compare(key, key); // type (and possibly null) check
root = new Entry<>(key, value, null);
size = 1;
modCount++;
return null;
}
int cmp;
Entry<K,V> parent;
// split comparator and comparable paths
Comparator<? super K> cpr = comparator;
if (cpr != null) { // 使用 comparator 比较大小
do { // 根据 key 的大小找到插入位置
parent = t;
cmp = cpr.compare(key, t.key);
if (cmp < 0) t = t.left;
else if (cmp > 0) t = t.right;
else // 如果有相等的 key 直接设置 value 并返回
return t.setValue(value);
} while (t != null);
}
else {// 使用 key 的自然顺序
if (key == null) throw new NullPointerException();
@SuppressWarnings("unchecked")
Comparable<? super K> k = (Comparable<? super K>) key;
do {
parent = t;
cmp = k.compareTo(t.key);
if (cmp < 0) t = t.left;
else if (cmp > 0) t = t.right;
else return t.setValue(value);
} while (t != null);
} // 新建一个结点插入
Entry<K,V>e = new Entry<>(key, value, parent);
if (cmp < 0) parent.left = e;
else parent.right = e;
fixAfterInsertion(e);// 可能会打破平衡,调整树结构
size++;
modCount++;
return null;
}

put 方法比较简单,就是根据 key 的大小,递归的判断插入左子树还是右子树,比较复杂操作在于插入后重新平衡的调整,核心代码如下:

删除

结点的删除也可能会打破红黑树的平衡,相比插入它的情况更复杂,假设待删除结点为 M,如果有非叶子结点,称为 C,那么有两种比较简单的删除情况:

  1. M 为红色结点,那么它必是叶子结点,直接删除即可,因为如果它有一个黑色的非叶子结点,那么就违反了性质5,通过 M 向左或向右的路径黑色结点不等
  2. M 是黑色而 C 是红色,只需要让 C 替换到 M 的位置,并变成黑色即可,或者说交换 CM 的值,并删除 C(就是第一个简单的情况)

这两个情况,本质都是删除了一个红色结点,不影响整体平衡,比较复杂的是 MC 都是黑色的情况,需要找一个结点填补这个黑色空缺

结点 M删除后它的位置上就变成了 NIL 隐形结点,为了方便描述,这个结点记为 NP 表示 N 的父结点,S 表示 N 兄弟结点,S 如果存在左右孩子,分别使用 SLSR 表示,那么删除就有以下几种情况:

  1. N 是根结点 - 直接删除即可
  2. PS 红 - 交换 PS 的颜色,然后对 P 左旋转
  3. PS 黑 - 将 S 变成红色,问题递归到父结点处理
  4. PS 黑 - 将 S 变成红色,删除成功
  5. P 颜色任意 SSL 红 - 对 S 右旋转,并交换 SSL 的颜色,变成情况6
  6. P 颜色任意 S 黑,SR 红 - 对 P 左旋转,交换 PS 的颜色,并将 SR 变成黑色

针对这些情况,TreeMap 进行了实现:

public V remove(Object key) {
Entry<K,V> p = getEntry(key);// 查找结点
if (p == null) return null; V oldValue = p.value;
deleteEntry(p); // 删除结点
return oldValue;
}
private void deleteEntry(Entry<K,V> p) {
modCount++;
size--;
// 如果 p 有两个孩子结点,转成删除最多有一个孩子的结点的情况
// 这里查找的是 p 的后继结点,也就是右子树值最小的结点
if (p.left != null && p.right != null) {
Entry<K,V> s = successor(p); // 查找后继结点
// 复制后继结点的 key 和 value 到 p
p.key = s.key;
p.value = s.value;
p = s; // 将 p 指向这个右子树值最小的结点
} // p has 2 children // 此时删除的 p 要么是叶子结点,要么只有一个左或右孩子
Entry<K,V> replacement = (p.left != null ? p.left : p.right); if (replacement != null) { // 有孩子结点
// 有一个左或右孩子,使用这个孩子结点替换它的父结点 p
replacement.parent = p.parent;
if (p.parent == null) root = replacement;
else if (p == p.parent.left)
p.parent.left = replacement;
else
p.parent.right = replacement; // Null out links so they are OK to use by fixAfterDeletion.
// 删除结点 p,也就是断开所有的链接
p.left = p.right = p.parent = null; // Fix replacement. 如果删除的是黑色结点
if (p.color == BLACK)
fixAfterDeletion(replacement); // 平衡调整
} else if (p.parent == null) { // return if we are the only node.
root = null;// 情况1,删除后变成空树
} else {//No children. Use self as phantom replacement and unlink.
// 删除的是叶子结点,那么删除 p 就是用它的隐形 NIL 叶子结点替换
// 它,这里将它自己看做隐形的叶子结点
if (p.color == BLACK)
fixAfterDeletion(p); //如果是黑色,进行平衡调整
// 从树中移除 P
if (p.parent != null) {
if (p == p.parent.left)
p.parent.left = null;
else if (p == p.parent.right)
p.parent.right = null;
p.parent = null;
}
}
}

deleteEntry 的逻辑就和二叉查找树一样,主要就是把删除任一结点的问题就简化成:删除一个最多只有一个孩子的结点的情况,并且所有的删除操作都在叶子结点完成。如果删除的是黑色结点,那么就视情况调整树重新达到平衡,具体代码如下:

查找

就像二分查找那样,TreeMap 也能在 ~lgN 次比较内结束查找,并且针对 键-key 提供了丰富的查询 API,

  • get(Object key) - 返回等于给定键的结点
  • floorEntry(K key) - 返回小于或等于给定键的结点中键最大的结点
  • ceilingEntry(K key) - 返回大于或等于给定键的结点中键最小的结点
  • higherEntry(K key) - 返回严格大于给定键的结点中键最小的结点
  • lowerEntry(K key) - 返回严格小于给定键的结点中键最大的结点

上面这些方法比较简单,可自行查看源码。另外,还有两个比较特殊的方法,它们用来查询指定结点在树中序遍历序列中的前驱和后继结点,在中序遍历序列中:

  • 前驱结点也就是左子树值最大的结点
  • 后继结点也就是右子树值最小的结点

遍历

遍历也是一个高频操作,在 Java 集合框架体系中,基本都是采用迭代器 Iterator 来实现,TreeMap 也是如此,它提供了对和对的迭代器。

TreeMap 迭代器最终的逻辑实现是在 PrivateEntryIterator 类中,默认按键的正序输出,它也提供了一个逆序输出的迭代器 DescendingKeyIterator。

具体代码不在贴出,比较简单,值得注意的就是上一节介绍的查找前驱和后继结点的两个方法,遍历常用 API 有:

  • entrySet() - 返回一个遍历所有结点的 Set 集合
  • keySet() - 返回一个遍历所有的 Set 集合
  • values() - 返回一个遍历所有的 Set 集合

小结

分析 TreeMap 的源码之前,一定要去分析红黑树的原理,然后在看它的源码,相信理论与实践相结合,掌握红黑树不在话下,TreeMap 也会用得游刃有余。

TreeMap 还能排序?分析下源码就明白了的更多相关文章

  1. erlang下lists模块sort(排序)方法源码解析(一)

    排序算法一直是各种语言最简单也是最复杂的算法,例如十大经典排序算法(动图演示)里面讲的那样 第一次看lists的sort方法的时候,蒙了,几百行的代码,我心想要这么复杂么(因为C语言的冒泡排序我记得不 ...

  2. erlang下lists模块sort(排序)方法源码解析(二)

    上接erlang下lists模块sort(排序)方法源码解析(一),到目前为止,list列表已经被分割成N个列表,而且每个列表的元素是有序的(从大到小) 下面我们重点来看看mergel和rmergel ...

  3. MapReduce中一次reduce方法的调用中key的值不断变化分析及源码解析

    摘要:mapreduce中执行reduce(KEYIN key, Iterable<VALUEIN> values, Context context),调用一次reduce方法,迭代val ...

  4. 在ConoHa上Centos7环境下源码安装部署LNMP

    本文记录了从源码,在Centos 7上手动部署LNMP环境的过程,为了方便以后对nginx和mariadb进行升级,这里采用yum的方式进行安装. 1.建立运行网站和数据库的用户和组 groupadd ...

  5. Linux内核(2) - 分析内核源码如何入手(上)

    透过现象看本质,兽兽们无非就是一些人体艺术展示.同样往本质里看过去,学习内核,就是学习内核的源代码,任何内核有关的书籍都是基于内核,而又不高于内核的. 既然要学习内核源码,就要经常对内核代码进行分析, ...

  6. CentOS 6.3下源码安装LAMP(Linux+Apache+Mysql+Php)环境【转载】

    本文转载自 园友David_Tang的博客,如有侵权请联系本人及时删除,原文地址: http://www.cnblogs.com/mchina/archive/2012/11/28/2778779.h ...

  7. Activiti架构分析及源码详解

    目录 Activiti架构分析及源码详解 引言 一.Activiti设计解析-架构&领域模型 1.1 架构 1.2 领域模型 二.Activiti设计解析-PVM执行树 2.1 核心理念 2. ...

  8. [源码分析] 从源码入手看 Flink Watermark 之传播过程

    [源码分析] 从源码入手看 Flink Watermark 之传播过程 0x00 摘要 本文将通过源码分析,带领大家熟悉Flink Watermark 之传播过程,顺便也可以对Flink整体逻辑有一个 ...

  9. 助力SpringBoot自动配置的条件注解ConditionalOnXXX分析--SpringBoot源码(三)

    注:该源码分析对应SpringBoot版本为2.1.0.RELEASE 1 前言 本篇接 如何分析SpringBoot源码模块及结构?--SpringBoot源码(二) 上一篇分析了SpringBoo ...

随机推荐

  1. 关于Windows更新窗口内容的问题(作为一个实验,效果很明显)

    Windows中的窗口在特定情况下会由系统进行重绘,如无效区域重新显现时,,会向窗口的处理过程发送VM_PAINT消息,但是,可能还有Windows自己的更新窗口处理,如在下面的代码中,将击键显式地转 ...

  2. select Demo

    #include <iostream> #include <WinSock2.h> using namespace std; #pragma comment(lib, &quo ...

  3. IIS6.0 WEB园配置

    为应用程序池创建 Web 园请注意以下几点: 一.每一个工作进程都会消耗系统资源和CPU占用率:太多的工作进程会导致系统资源和CPU利用率的急剧消耗: 二.每一个工作进程都具有自己的状态数据,如果We ...

  4. modelform组件以及ChoiceField属性

    一. Forms组件补充 1.__init__() 如果继承forms.Form的类中的每一个字段,或者大部分字段都做了相同的约束,可以将该约束放到__init__中编写 实例:每一个字段都需要添加f ...

  5. hadoop之文件管理基本操作

    # 格式化hdfs hadoop namenode -format # 查看hadoop下的文件夹 hadoop fs -ls # 创建hdfs文件夹 hadoop fs -mkdir /user/i ...

  6. Mac上刚安装的WebStorm或PHPStorm遇到SVN版本太旧的问题

    Mac上刚安装的WebStorm或PHPStorm遇到SVN版本太旧的问题: URL: svn: E155021: This client is too old to work with the wo ...

  7. YARN分析系列之二 -- Hadoop YARN各个自模块说明

    先做如下声明,本代码版本是基于 3.1.2 版本. 其实,我们自己在写代码的时候,会有意识地将比较大的功能项独立成包,独立成module, 独立成项目,项目之间的关系既容易阅读理解,又便于管理. 如下 ...

  8. Redis 学习笔记(篇三):跳表

    跳表 跳表(skiplist)是一种有序的数据结构,是在有序链表的基础上发展起来的. 在 Redis 中跳表是有序集合(sort set)的底层实现之一. 说到 Redis 中的有序集合,是不是和 J ...

  9. 有关Html页面节点的简单理解

    这是之前研究web前端的一点经验,主要针对刚入门还没怎么研究的朋友. 因为我发现我在用js,css参与过网站开发项目后仍然没有理解文本节点与普通节点的差别,所以记下来拿来分享一下. 先上结论:< ...

  10. ES6 新增声明变量的 var let const 的区别详解

    var 如果使用关键字 var 声明一个变量,那么这个变量就属于当前的函数作用域,如果声明是发生在任何函数外的顶层声明,那么这个变量就属于全局作用域. let 1.let 声明的变量具有块作用域的特征 ...