1.Overview

For this project, I implemented the sending and receiving side of a reliable data transport (RDT) protocol. It achieves error-free, loss-free, and in-order data delivery on top of a link medium that can lose, reorder, and corrupt packets. The implementation follows sliding window protocol (Go-Back-N protocol).

2.Design explanation

2.1Implemented Routines

I modified two files (MyRdtSender.java and MyRdtReceiver.java) by enhancing three methods for handling requests to send data from the upper layer, and receipt of data from the lower layer for both sender and receiver. The routines are detailed below. Such routines in real life would be part of the operating system.

  • (Sender) public void receiveFromUpperLayer(byte[] message);
  • (Sender) public void receiveFromLowerLayer(Packet packet);
  • (Sender) public void onTimeout();
  • (Receiver) public void receiveFromLowerLayer(Packet packet);

2.2Called Routines

The routines I call (implemented by the simulated environment) are detailed below. Such routines in real life would also be part of the operating system.

  • (Sender) public void startTimer(double timeout); - start the sender timer with a specified timeout (in seconds). This timer is canceled when (Sender) public void stopTimer() is called or a new (Sender) public void startTimer() is called before the current timer expires.
  • (Sender) onTimeout() will be called when the timer expires.
  • (Sender) public void stopTimer(); - stop the sender timer.
  • (Sender) public boolean isTimerSet(); - check whether the sender timer is being set, return true if the timer is set, return false otherwise.
  • (Sender) public double getSimulationTime(); - return the local simulation time, which may be useful in timer management. You should not assume that the time is synchronized between the sender and receiver side.
  • (Sender) public void sendToLowerLayer(Packet packet); - pass a packet to the lower layer at the sender for delivery.
  • (Receiver) public void sendToLowerLayer(Packet packet); - pass a packet to the lower layer at the receiver for delivery.
  • void (Receiver) sendToUpperLayer(byte[] message); - deliver a message to the upper layer at the receiver.

2.3Parameters

  • sim_time - total simulation time, the simulation will end at this time (in seconds).
  • mean_msg_arrivalint - average intervals between consecutive messages passed from the upper layer at the sender (in seconds). The actual interval varies between zero and twice the average.
  • mean_msg_size - average size of messages (in bytes). The actual size varies between one and twice the average.
  • outoforder_rate - the probability that a packet is not delivered with the normal latency - 100ms. A value of 0.1 means that one in ten packets are not delivered with the normal latency. When this occurs, the latency varies between zero and 200ms.
  • loss_rate - packet loss probability: a value of 0.1 means that one in ten packets are lost on average. corrupt_rate - packet corruption probability: a value of 0.1 means that one in ten packets (excluding those lost) are corrupted on average. Note that any part of a packet can be corrupted.
  • tracing_level - levels of trace printouts (higher level always prints out more information): a tracing level of 0 turns off all traces, a tracing level of 1 turns on regular traces, a tracing level of 2 prints out the delivered message. Most likely you want to use level 1 for debugging and use level 0 for final testing.

2.4Packet format

In my implementation, the packet format is laid out as the following:

|<- 1 byte ->|<- 1 byte ->|<- 2 byte ->|<- the rest ->|
| payload size | seq number | checksum |<- payload ->|

The first byte of each packet indicates the size of the payload.
The second byte of each packet indicates the sequence number of the packet.
The third and fourth byte of each packet indicates the checksum.
The rest bytes of each packet indicate the actual payload.

2.5My RDT Sender

I used one window to store the packets that are sent but not acknowledged. I used one buffer to store the packets that are waiting for the window available. When there are ACKs received from the lower layer, I correspondingly free the spaces in window and acquire more packets from buffer if available. The buffer is used to temparorily store packets from the upper layer. If the window is already full with no position. All the message will store in the buffer. I used the internet checksum to ensure the accuracy of the datas.

2.6My RDT Receiver

I used a variable to indicate the expected sequence number receiver expected to receive. When the packet received has the different sequence number from the expected number, it will not accept it. Otherwise, send back the ACK to the lower layer.

3.Implementation details

3.1 Variable and Parameters

Here I used Queue to implement the buffer and window. Set the size of Window as 10 and Timeout as 0.3. I used lastAck to keep track of acknowledged packets in window.

private Queue buffer; // only unsent data
private Queue window; // sent but unAcked data

public static final int WINDOW_SIZE = 10;
private static final double TIMEOUT = 0.3;
public static final int SEQUENCE_SIZE = 128; // sequence number has 1 byte equals to 8 bits, so total is 2 pow 7 = 128
public static int headerSize = 4;
private int seq;
private int lastAck;

3.2 Sender: ReceiveFromUpperLayer

When the message’s length is bigger than the maxPayload, which equals to 60, I fragment it to lots of packets and not only put it to window queue, but also sent it out to lower layer.
Also, I acquire packets from buffer if it can.

public void receiveFromUpperLayer(byte[] message) { // make packet
int msgPointer = 0;
int maxPayload = RDT_PKTSIZE - headerSize;
while (message.length-msgPointer > maxPayload) {
msgPointer = createPacket(maxPayload, message, msgPointer);
}
if (message.length > msgPointer)
createPacket(message.length-msgPointer, message, msgPointer); sentFromBufferToWindowIfCan();
}

3.3 Sender: ReceiveFromLowerLayer

The only packet that sent back from lower layer is the ACK packet. I check if it is correct using the checksum and the sequence number inside. If it is correct, I poll all the packets till the acknowledged one in window. Also, I acquire packets from buffer if it can.

public void receiveFromLowerLayer(Packet packet) {
int ack = packet.data[1];
long computedChecksum = checkSum(packet.data);
long rcvChecksum = (((long)((packet.data[2]) << 8) & 0xFF00) | ((long)packet.data[3] & 0xFF));
int gap = (ack - lastAck) % (SEQUENCE_SIZE - 1);
if (gap < 0) gap += (SEQUENCE_SIZE - 1); if (ack > lastAck && (lastAck + SEQUENCE_SIZE - 1 - ack <= WINDOW_SIZE)) return;
if ((gap != 0) && (gap <= WINDOW_SIZE) && (computedChecksum == rcvChecksum)){
for (int i = 0; i< gap && !window.isEmpty() && window.peek().data[1] != lastAck; i++) {
window.poll();
}
if(!window.isEmpty() && window.peek().data[1] == lastAck){
window.poll();
}
lastAck = ack;
} sentFromBufferToWindowIfCan(); }

3.4 SentFromBufferToWindowIfCan
Check if current window is available for more packets and if still some packets in buffer, if yes, sent it from buffer to window, and sent it out to lower layer as well. In addition, start the timer.

private void sentFromBufferToWindowIfCan(){
/* if still room for window, try to get packets from buffer*/
if (window.size() < WINDOW_SIZE){
for (int i = 0; i < WINDOW_SIZE -window.size() && !buffer.isEmpty(); i++) {
Packet pkt = buffer.poll();
window.offer(pkt); // send to window
Packet pktCopy = new Packet();
System.arraycopy(pkt.data, 0, pktCopy.data, 0, 64);
sendToLowerLayer(pktCopy);
startTimer(TIMEOUT);
}
} }

3.5 OnTimeout
When time is out, resent all the packets in the window and restart the timer.

public void onTimeout() {
if (!window.isEmpty()) {
for (Packet pkt : window) {
Packet pktCopy = new Packet();
System.arraycopy(pkt.data, 0, pktCopy.data, 0, 64);
sendToLowerLayer(pktCopy);
startTimer(TIMEOUT);
}
}
}

3.6 CreatePacket
Given the payloadsize and message and the current pointer on message, I move the message pointer according to the size. When consist a packet, I send it out to buffer.

private int createPacket(int payloadSize, byte[] message, int msgPointer) {
Packet pkt = new Packet();
pkt.data[0] = (byte) payloadSize;
pkt.data[1] = (byte) seq;
System.arraycopy(message, msgPointer, pkt.data, headerSize, pkt.data[0]);
long checksum = checkSum(pkt.data);
pkt.data[3] = (byte) (checksum & 0xFF);
pkt.data[2] = (byte) ((checksum >> 8) & 0xFF);
buffer.offer(pkt);
msgPointer += payloadSize;
seq = (seq + 1) % (SEQUENCE_SIZE - 1);
return msgPointer;
}

3.7 CheckSum
According to the internet checksum algorithm, I compute the checksum.

public static final long checkSum(byte[] pkt) {
long checksum = (((pkt[0] << 8) & 0xFF00) | ((pkt[1]) & 0xFF)); // compute for the payloadsize and seqnum
if ((checksum & 0xFFFF0000) > 0) {
checksum = (checksum & 0xFFFF) + 1;
}
int start = headerSize ; // skip the first 4 bytes including the checksum 2 bytes while (start < RDT_PKTSIZE) {
checksum += (((pkt[start] << 8) & 0xFF00) | ((pkt[start + 1]) & 0xFF));
if ((checksum & 0xFFFF0000) > 0) {
checksum = (checksum & 0xFFFF) + 1;
}
start += 2;
}
return ~checksum & 0xFFFF;
}

3.8 Receiver: ReceiveFromLowerLayer
On the receiver side, I not only check the checksum, but also check if the payloadsize is valid. If both yes, I create a new message and send it to the upper layer. At the same time, I send the ACK packet back using the original packet sequence number.

public void receiveFromLowerLayer(Packet packet) {
int rcvSeq = packet.data[1];
long rcvChecksum = (((long)((packet.data[2]) << 8) & 0xFF00) | ((long)packet.data[3] & 0xFF));
long computedChecksum = MyRdtSender.checkSum(packet.data); if (computedChecksum == rcvChecksum && rcvSeq == expectedSeq) {
int payloadsize = packet.data[0];
if (payloadsize < 0 || payloadsize > RDT_PKTSIZE - MyRdtSender.headerSize)
return ;
byte[] message = new byte[packet.data[0]];
System.arraycopy(packet.data, 4, message, 0, packet.data[0]);
sendToUpperLayer(message);
sendToLowerLayer(packet);
expectedSeq = (expectedSeq + 1) % (MyRdtSender.SEQUENCE_SIZE - 1);
}
}

4.Passed on different arguments tests

4.1 Clean data

./rdt_sim 1000 0.1 100 0 0 0 0

4.2 Standard Test

./rdt_sim 1000 0.1 100 0.02 0.02 0.02 0

4.3 Harder Test: More message sent

sim_tim: 1000 -> 10000
./rdt_sim 1000 0.1 100 0.02 0.02 0.02 0

4.4 Harder Test: Improve wrong rate

Out_of_Order_rate: 0.02 -> 0.1
Loss_rate: 0.02 -> 0.1
Corrupt_rate: 0.02 -> 0.1
sim_tim: 1000
./rdt_sim 1000 0.1 100 0.1 0.1 0.1 0

4.5 Harder Test: Improve wrong rate v2

Out_of_Order_rate: 0.02 -> 0.2
Loss_rate: 0.02 -> 0.2
Corrupt_rate: 0.02 -> 0.2
sim_tim: 100
./rdt_sim 100 0.1 100 0.2 0.2 0.2 0

4.6 Harder Test: Extreme out of order 90%

Out_of_Order_rate: 0.02 -> 0.9
Loss_rate: 0.02 -> 0.02
Corrupt_rate: 0.02 -> 0.02
sim_tim: 1000
./rdt_sim 1000 0.1 100 0.9 0.02 0.02 0

4.7 Harder Test: Loss rate 30%

Out_of_Order_rate: 0.02 -> 0.02
Loss_rate: 0.02 -> 0.3
Corrupt_rate: 0.02 -> 0.02
sim_tim: 1000

./rdt_sim 1000 0.1 100 0.02 0.3 0.02 0

4.8 Harder Test: Corrupted rate 30%

Out_of_Order_rate: 0.02 -> 0.02
Loss_rate: 0.02 -> 0.02
Corrupt_rate: 0.02 -> 0.3
sim_tim: 1000

Go-back-N Implementation of reliable data transport (RDT)的更多相关文章

  1. [Network]Transport Layer

    1 Principles behind Transport Layer Services 1.1 Multiplexing/Demultiplexing Multiplexing at sender ...

  2. Trivial File Transfer Protocol (TFTP)

    Assignment 2The Trivial File Transfer Protocol (TFTP) is an Internet software utility fortransferrin ...

  3. Indexing Sensor Data

    In particular embodiments, a method includes, from an indexer in a sensor network, accessing a set o ...

  4. UDT: Breaking the Data Transfer Bottleneck

    http://udt.sourceforge.net/ DT is a reliable UDP based application level data transport protocol for ...

  5. The Log: What every software engineer should know about real-time data's unifying abstraction

    http://engineering.linkedin.com/distributed-systems/log-what-every-software-engineer-should-know-abo ...

  6. In-Stream Big Data Processing

    http://highlyscalable.wordpress.com/2013/08/20/in-stream-big-data-processing/   Overview In recent y ...

  7. virtio guest side implementation: PCI, virtio device, virtio net and virtqueue

    With the publishing of OASIS virtio specification version 1.0, virtio made another big step in becom ...

  8. Data Types

    原地址: Home / Database / Oracle Database Online Documentation 11g Release 2 (11.2) / Database Administ ...

  9. (zhuan) Variational Autoencoder: Intuition and Implementation

    Agustinus Kristiadi's Blog TECH BLOG TRAVEL BLOG PORTFOLIO CONTACT ABOUT Variational Autoencoder: In ...

随机推荐

  1. .Net Core中间件和过滤器实现错误日志记录

    1.中间件的概念 ASP.NET Core的处理流程是一个管道,中间件是组装到应用程序管道中用来处理请求和响应的组件. 每个中间件可以: 选择是否将请求传递给管道中的下一个组件. 可以在调用管道中的下 ...

  2. lcy各种要填的坑

    莫比乌斯反演.FFT/NTT/FWT/FMT/ 数论容斥复习写题 概率期望复习写题 总结一下dp 看斜率优化.四边形不等式 网络流写题 字符串博客写完,写题 lh老师的课件啃完写题 考前打打正睿模拟赛

  3. vertical-align之见

    ertical-align   英文翻译为垂直对齐 ,常用来应用于table 表格中文字的垂直居中:脱离表格后不常用: 有朋友问起:故总结记之: 开局一张图,下来全靠编 这是一个简单的四线表格,小学时 ...

  4. [Python] Python 学习记录(2)

    1.range(x,y) [x,y) >>> range(0,4) #0,1,2,3 >>> range(1,4) #1,2,3 2.dics dics.get(k ...

  5. 快学Scala 第三课 (定长数组,变长数组, 数组循环, 数组转换, 数组常用操作)

    定长数组定义: val ar = new Array[Int](10) val arr = Array("aa", "bb") 定长数组赋值: arr(0) = ...

  6. web前端之浏览器: 知识汇总

    一.URL到页面 准备阶段: 输入URL,Enter进入查找 浏览器在本地查找host文件,匹配对应的IP: 找到返回浏览器并缓存 没有,则进入路由查找: 找到返回浏览器并缓存 再没有,再进入公网DN ...

  7. MySQL8身份验证问题解决

    开新项目.使用MySQL8,在经历过B级别的网速下载后,终于安装好了MySQL,虽然在终端上是可以直接登录的. 但是我使用Navicat就无法访问了,提示什么登录失败,还有乱码. 搜索了一下,发现是M ...

  8. Executor线程池原理详解

    线程池 线程池的目的就是减少多线程创建的开销,减少资源的消耗,让系统更加的稳定.在web开发中,服务器会为了一个请求分配一个线程来处理,如果每次请求都创建一个线程,请求结束就销毁这个线程.那么在高并发 ...

  9. python编程基础之六

    运算符和表达式 +,-,*,/,     加减乘除 %, 模运算 **,  幂运算 //  整除 运算优先级方面:** >正负号(+,-)>//,%>*,/>+,- 模运算有一 ...

  10. js对象参考手册 -戈多编程

    今天来总结下常用的熟记的js api (一)JavaScript对象 (1)Array 对象属性:(3个) constructor lengh prototype 对象方法:(14个) contat( ...