Farmer John had just acquired several new farms! He wants to connect the farms with roads so that he can travel from any farm to any other farm via a sequence of roads; roads already connect some of the farms.

Each of the N (1 ≤ N ≤ 1,000) farms (conveniently numbered 1..N) is represented by a position (Xi, Yi) on the plane (0 ≤ Xi ≤ 1,000,000; 0 ≤ Yi ≤ 1,000,000). Given the preexisting M roads (1 ≤ M ≤ 1,000) as pairs of connected farms, help Farmer John determine the smallest length of additional roads he must build to connect all his farms.

Farmer John最近得到了一些新的农场,他想新修一些道路使得他的所有农场可以经过原有的或是新修的道路互达(也就是说,从任一个农场都可以经过一些首尾相连道路到达剩下的所有农场)。有些农场之间原本就有道路相连。 所有N(1 <= N <= 1,000)个农场(用1..N顺次编号)在地图上都表示为坐标为(X_i, Y_i)的点(0 <= X_i <= 1,000,000;0 <= Y_i <= 1,000,000),两个农场间道路的长度自然就是代表它们的点之间的距离。现在Farmer John也告诉了你农场间原有的M(1 <= M <= 1,000)条路分别连接了哪两个农场,他希望你计算一下,为了使得所有农场连通,他所需建造道路的最小总长是多少。

输入格式

* Line 1: Two space-separated integers: N and M

* Lines 2..N+1: Two space-separated integers: Xi and Yi

* Lines N+2..N+M+2: Two space-separated integers: i and j, indicating that there is already a road connecting the farm i and farm j.

  • 第1行: 2个用空格隔开的整数:N 和 M

  • 第2..N+1行: 第i+1行为2个用空格隔开的整数:X_i、Y_i

  • 第N+2..N+M+2行: 每行用2个以空格隔开的整数i、j描述了一条已有的道路, 这条道路连接了农场i和农场j

输出格式

* Line 1: Smallest length of additional roads required to connect all farms, printed without rounding to two decimal places. Be sure to calculate distances as 64-bit floating point numbers.

输出使所有农场连通所需建设道路的最小总长,保留2位小数,不必做 任何额外的取整操作。为了避免精度误差,计算农场间距离及答案时 请使用64位实型变量

输入输出样例

输入 #1

4 1
1 1
3 1
2 3
4 3
1 4
输出 #1

4.00

说明/提示

题目简述:给出n个点的坐标,其中一些点已经连通,现在要把所有点连通,求修路的最小长度.

(来自洛谷)

因为要求把所有的点联通的最小长度,直接求最小生成树。

至于一部分已经修好的路径,既然不用再修(肯定在树内且无需计权值),对于每条路直接添加一条权值为0的边即可。

我用了一个vector存储路径,每次穷举两个点求欧几里得距离插入边,最后加入那些0权值边后Kruskal算法直接解决。

#include <bits/stdc++.h>
using namespace std;
int m, n;
double rslt;
double posx[], posy[];
struct edge{
int from, to;
double val;
};
vector <edge> g;
int edge_cnt;
bool cmp(const edge &x, const edge &y){
if(x.val == y.val){
if(x.from == y.from) return x.to < y.to;
return x.from < y.from;
}
return x.val < y.val;
}
void add_edge(int f, int t, double v){
g.push_back((edge){f, t, v});
g.push_back((edge){t, f, v});
edge_cnt += ;
} int father[];
int find(int x){
if(father[x] != x) father[x] = find(father[x]);
return father[x];
} void add_place(){
for(int i=; i<n; i++){
for(int j=i+; j<=n; j++){
double len = (double)sqrt((double)(posx[i] - posx[j]) * (posx[i] - posx[j]) + (double)(posy[i] - posy[j]) * (posy[i] - posy[j]));
add_edge(i, j, len);
}
}
return;
} void kruskal(){
for(int i=; i<n; i++){
father[i] = i;
}
sort(g.begin(), g.end(), cmp);
int cnt;
for(int i=; i<edge_cnt; i++){
int f1 = find(g[i].from), f2 = find(g[i].to);
if(f1 != f2){
rslt += g[i].val;
father[f1] = f2;
if(++cnt == n-) return;
}
} } int main(){
// freopen(".in", "r", stdin);
// freopen(".out", "w", stdout);
cin >> n >> m;
for(int i=; i<=n; i++){
cin >> posx[i] >> posy[i];
}
add_place();
for(int i=; i<m; i++){
int f, t;
cin >> f >> t;
add_edge(f, t, );
}
kruskal();
printf("%.2f", rslt);
return ;
}

USACO 07DEC 道路建设(Building Roads)的更多相关文章

  1. bzoj1626 / P2872 [USACO07DEC]道路建设Building Roads

    P2872 [USACO07DEC]道路建设Building Roads kruskal求最小生成树. #include<iostream> #include<cstdio> ...

  2. 洛谷——P2872 [USACO07DEC]道路建设Building Roads

    P2872 [USACO07DEC]道路建设Building Roads 题目描述 Farmer John had just acquired several new farms! He wants ...

  3. 洛谷 P2872 [USACO07DEC]道路建设Building Roads 题解

    P2872 [USACO07DEC]道路建设Building Roads 题目描述 Farmer John had just acquired several new farms! He wants ...

  4. 洛谷 P2872 [USACO07DEC]道路建设Building Roads

    题目描述 Farmer John had just acquired several new farms! He wants to connect the farms with roads so th ...

  5. 题解 P2872 【[USACO07DEC]道路建设Building Roads】

    这道题真的是令人窒息,Kruskal调了贼久一直RE,最后发现数组大小稍微少了那么一点点.(也就10倍吧..) 言归正传,根据本人的分析(以及算法标签的提示),这是一道求最小生成树的题目,当然要注意已 ...

  6. $P2872\ [USACO07DEC]道路建设Building\ Roads$

    \(problem\) 错的原因是\(RE\)(大雾 , 时刻谨记 \(N\) 个地方的话 保守开 \(\frac{N^2}{2}\) 大小. 因为是边. 边最多的情况即完全图 : $1+2+3+4. ...

  7. [USACO07DEC]道路建设Building Roads

    题目:洛谷P2872.POJ3625. 题目大意:给你n个点的坐标,有些点已经有边连通,现在要你连上剩下的所有点,求这些边的最小长度是多少(不包括原来的边). 解题思路:最小生成树,把所有边处理出来, ...

  8. 洛谷 P2872 【[USACO07DEC]道路建设Building Roads】

    P2872 传送门 首先 题目概括:题目让着求使所有牧场都联通.需要修建多长的路. 显然这是一道最小生成树板子题(推荐初学者做). 那我就说一下kruskal吧. Kruskal算法是一种用来查找最小 ...

  9. USACO Building Roads

    洛谷 P2872 [USACO07DEC]道路建设Building Roads 洛谷传送门 JDOJ 2546: USACO 2007 Dec Silver 2.Building Roads JDOJ ...

随机推荐

  1. Linux——服务器版本安装 (VMware)

    一.Linux简介 Linux是一套免费使用和自由传播的类UNIX操作系统,是一个基于POSIX和UNIX的多用户.多任务.支持多线程和多CPU的操作系统.它能运行主要的UNIX工具软件.应用程序和网 ...

  2. 文件操作——RandomAccessFile

      文件操作——RandomAccessFile 构建RandomAccessFileJava提供了一个可以对文件随机访问的操作,访问包括读和写操作.该类名为RandomAccessFile.该类的读 ...

  3. Mac 安装node npm cnpm vue 以及卸载 node 和 npm 的方法 清空npm缓存的方法

    S01 安装node(内含npm) 首先,到官网下载长期支持版,截止目前,最新的长期支持版本号是10.16.3 https://nodejs.org/zh-cn/download/ 下载完毕后,安装该 ...

  4. Spring Cloud Feign 性能优化

    #### 1.替换 tomcat 首先,把 tomcat 换成 undertow,这个性能在 Jmeter 的压测下,undertow 比 tomcat 高一倍 **第一步,pom 修改去除tomca ...

  5. Linux修改屏幕分辨率至2K

    使用命令:cvt,与 xrandr 使用cvt命令查看分辨率配置: Modeline后边分别是 modeName 以及 详细的配置 linklee@linklee-270E5G-270E5U:~$ c ...

  6. Chrome插件开发(一)

    作为一个开发人员,我们在日常工作中肯定会用到 Chrome 浏览器,同时也会用到谷歌的一些插件,比如 Tampermonkey,AdBlock等,在之前的文章本人还是用了 Tampermonkey,传 ...

  7. mac安装flask

    1.1使用虚拟环境 输入以下命令可以检查系统是否安装了 virtualenv: $ virtualenv --version 大多数 Linux 发行版都提供了 virtualenv 包.例如,Ubu ...

  8. linux系统定时发送邮件

    Linux Centos7系统下利用自带的mail发送邮件服务 简介 本章分为五部分. 第一部分是基于虚拟机下的CentOS 7环境定时发送邮件: 第二部分是基于在阿里云购买的CentOS 7服务器环 ...

  9. Windows SDK version 8.1 下载地址

    Windows SDK version 8.1 下载地址 https://go.microsoft.com/fwlink/p/?LinkId=323507

  10. 收集的MSSQL注入笔记

    ①判断数据库类型 and exists (select * from sysobjects)--返回正常为mssql(也名sql server)and exists (select count(*) ...