Farmer John had just acquired several new farms! He wants to connect the farms with roads so that he can travel from any farm to any other farm via a sequence of roads; roads already connect some of the farms.

Each of the N (1 ≤ N ≤ 1,000) farms (conveniently numbered 1..N) is represented by a position (Xi, Yi) on the plane (0 ≤ Xi ≤ 1,000,000; 0 ≤ Yi ≤ 1,000,000). Given the preexisting M roads (1 ≤ M ≤ 1,000) as pairs of connected farms, help Farmer John determine the smallest length of additional roads he must build to connect all his farms.

Farmer John最近得到了一些新的农场,他想新修一些道路使得他的所有农场可以经过原有的或是新修的道路互达(也就是说,从任一个农场都可以经过一些首尾相连道路到达剩下的所有农场)。有些农场之间原本就有道路相连。 所有N(1 <= N <= 1,000)个农场(用1..N顺次编号)在地图上都表示为坐标为(X_i, Y_i)的点(0 <= X_i <= 1,000,000;0 <= Y_i <= 1,000,000),两个农场间道路的长度自然就是代表它们的点之间的距离。现在Farmer John也告诉了你农场间原有的M(1 <= M <= 1,000)条路分别连接了哪两个农场,他希望你计算一下,为了使得所有农场连通,他所需建造道路的最小总长是多少。

输入格式

* Line 1: Two space-separated integers: N and M

* Lines 2..N+1: Two space-separated integers: Xi and Yi

* Lines N+2..N+M+2: Two space-separated integers: i and j, indicating that there is already a road connecting the farm i and farm j.

  • 第1行: 2个用空格隔开的整数:N 和 M

  • 第2..N+1行: 第i+1行为2个用空格隔开的整数:X_i、Y_i

  • 第N+2..N+M+2行: 每行用2个以空格隔开的整数i、j描述了一条已有的道路, 这条道路连接了农场i和农场j

输出格式

* Line 1: Smallest length of additional roads required to connect all farms, printed without rounding to two decimal places. Be sure to calculate distances as 64-bit floating point numbers.

输出使所有农场连通所需建设道路的最小总长,保留2位小数,不必做 任何额外的取整操作。为了避免精度误差,计算农场间距离及答案时 请使用64位实型变量

输入输出样例

输入 #1

4 1
1 1
3 1
2 3
4 3
1 4
输出 #1

4.00

说明/提示

题目简述:给出n个点的坐标,其中一些点已经连通,现在要把所有点连通,求修路的最小长度.

(来自洛谷)

因为要求把所有的点联通的最小长度,直接求最小生成树。

至于一部分已经修好的路径,既然不用再修(肯定在树内且无需计权值),对于每条路直接添加一条权值为0的边即可。

我用了一个vector存储路径,每次穷举两个点求欧几里得距离插入边,最后加入那些0权值边后Kruskal算法直接解决。

#include <bits/stdc++.h>
using namespace std;
int m, n;
double rslt;
double posx[], posy[];
struct edge{
int from, to;
double val;
};
vector <edge> g;
int edge_cnt;
bool cmp(const edge &x, const edge &y){
if(x.val == y.val){
if(x.from == y.from) return x.to < y.to;
return x.from < y.from;
}
return x.val < y.val;
}
void add_edge(int f, int t, double v){
g.push_back((edge){f, t, v});
g.push_back((edge){t, f, v});
edge_cnt += ;
} int father[];
int find(int x){
if(father[x] != x) father[x] = find(father[x]);
return father[x];
} void add_place(){
for(int i=; i<n; i++){
for(int j=i+; j<=n; j++){
double len = (double)sqrt((double)(posx[i] - posx[j]) * (posx[i] - posx[j]) + (double)(posy[i] - posy[j]) * (posy[i] - posy[j]));
add_edge(i, j, len);
}
}
return;
} void kruskal(){
for(int i=; i<n; i++){
father[i] = i;
}
sort(g.begin(), g.end(), cmp);
int cnt;
for(int i=; i<edge_cnt; i++){
int f1 = find(g[i].from), f2 = find(g[i].to);
if(f1 != f2){
rslt += g[i].val;
father[f1] = f2;
if(++cnt == n-) return;
}
} } int main(){
// freopen(".in", "r", stdin);
// freopen(".out", "w", stdout);
cin >> n >> m;
for(int i=; i<=n; i++){
cin >> posx[i] >> posy[i];
}
add_place();
for(int i=; i<m; i++){
int f, t;
cin >> f >> t;
add_edge(f, t, );
}
kruskal();
printf("%.2f", rslt);
return ;
}

USACO 07DEC 道路建设(Building Roads)的更多相关文章

  1. bzoj1626 / P2872 [USACO07DEC]道路建设Building Roads

    P2872 [USACO07DEC]道路建设Building Roads kruskal求最小生成树. #include<iostream> #include<cstdio> ...

  2. 洛谷——P2872 [USACO07DEC]道路建设Building Roads

    P2872 [USACO07DEC]道路建设Building Roads 题目描述 Farmer John had just acquired several new farms! He wants ...

  3. 洛谷 P2872 [USACO07DEC]道路建设Building Roads 题解

    P2872 [USACO07DEC]道路建设Building Roads 题目描述 Farmer John had just acquired several new farms! He wants ...

  4. 洛谷 P2872 [USACO07DEC]道路建设Building Roads

    题目描述 Farmer John had just acquired several new farms! He wants to connect the farms with roads so th ...

  5. 题解 P2872 【[USACO07DEC]道路建设Building Roads】

    这道题真的是令人窒息,Kruskal调了贼久一直RE,最后发现数组大小稍微少了那么一点点.(也就10倍吧..) 言归正传,根据本人的分析(以及算法标签的提示),这是一道求最小生成树的题目,当然要注意已 ...

  6. $P2872\ [USACO07DEC]道路建设Building\ Roads$

    \(problem\) 错的原因是\(RE\)(大雾 , 时刻谨记 \(N\) 个地方的话 保守开 \(\frac{N^2}{2}\) 大小. 因为是边. 边最多的情况即完全图 : $1+2+3+4. ...

  7. [USACO07DEC]道路建设Building Roads

    题目:洛谷P2872.POJ3625. 题目大意:给你n个点的坐标,有些点已经有边连通,现在要你连上剩下的所有点,求这些边的最小长度是多少(不包括原来的边). 解题思路:最小生成树,把所有边处理出来, ...

  8. 洛谷 P2872 【[USACO07DEC]道路建设Building Roads】

    P2872 传送门 首先 题目概括:题目让着求使所有牧场都联通.需要修建多长的路. 显然这是一道最小生成树板子题(推荐初学者做). 那我就说一下kruskal吧. Kruskal算法是一种用来查找最小 ...

  9. USACO Building Roads

    洛谷 P2872 [USACO07DEC]道路建设Building Roads 洛谷传送门 JDOJ 2546: USACO 2007 Dec Silver 2.Building Roads JDOJ ...

随机推荐

  1. JavaScript系列:函数式编程(开篇)

    前言: 上一篇介绍了 函数回调,高阶函数以及函数柯里化等高级函数应用,同时,因为正在学习JavaScript·函数式编程,想整理一下函数式编程中,对于我们日常比较有用的部分. 为什么函数式编程很重要? ...

  2. Scala Eclipse org.eclipse.e4.workbench异常奔溃修复

     Scala Eclipse org.eclipse.e4.workbench异常奔溃修复: 找到<workspace>/.metadata/.plugins/org.eclipse.e4 ...

  3. parse_args(argsparse):python和命令行之间的交互

    初始化 假设我们创建一个“argp.py”的文件. import argparse # 引入模块 # 建立解析对象 parser = argparse.ArgumentParser() parser. ...

  4. 使用Spring-boot-starter标准改造项目内的RocketMQ客户端组件

    一.背景介绍 我们在使用Spring Cloud全家桶构建微服务应用时,经常能看到spring-boot-xxx-starter的依赖,像spring-boot-starter-web.spring- ...

  5. Java8新特性之Lambda

    为什么要Lambda Java8应该是目前最大的一次更新了,更新后我们迎来了很多新特性,其中便包括Lambda表达式,函数式编程的思想正式进入Java,让我们看一个经典案例. 例1 按照两个人的年龄排 ...

  6. 机器学习:IB1算法的weka源码详细解析(1NN)

    机器学习的1NN最近邻算法,在weka里叫IB1,是因为Instance Base  1 ,也就是只基于一个最近邻的实例的惰性学习算法. 下面总结一下,weka中对IB1源码的学习总结. 首先需要把 ...

  7. luogu P3380 【模板】二逼平衡树(分块实现)

    题目描述 您需要写一种数据结构(可参考题目标题),来维护一个有序数列,其中需要提供以下操作: 查询 \(k\) 在区间内的排名 查询区间内排名为 \(k\) 的值 修改某一位值上的数值 查询 \(k\ ...

  8. POST PUT 小解

    POST 主要是用来提交数据让服务器进行处理的,PUT主要是请求数据的. POST 提交的数据放在HTTP正文里面,而PUTT提交的数据放在url里面.

  9. Spring Boot 入门(七):集成 swagger2

    本片文章是基于前一篇写的,<Spring Boot 入门(六):集成 treetable 和 zTree 实现树形图>,本篇主要介绍了spring boot集成swagger2.关于swa ...

  10. nginx::基于Nginx+nginx-rtmp-module+ffmpeg搭建rtmp、hls流媒体服务器

    待续 ffmpeg -re -i "/home/bk/hello.mp4" -vcodec libx264 -vprofile baseline -acodec aac -ar 4 ...