题目描述

对于刚上大学的牛牛来说,他面临的第一个问题是如何根据实际情况申请合适的课程。

在可以选择的课程中,有 2n 节课程安排在 n 个时间段上。在第 i (1 ≤ i ≤ n)个时间段上,两节内容相同的课程同时在不同的地点进行,其中,牛牛预先被安排在教室 ci 上课,而另一节课程在教室 di 进行。

在不提交任何申请的情况下,学生们需要按时间段的顺序依次完成所有的 n 节安排好的课程。如果学生想更换第i节课程的教室,则需要提出申请。若申请通过,学生就可以在第 i 个时间段去教室 di 上课,否则仍然在教室 ci 上课。

由于更换教室的需求太多,申请不一定能获得通过。通过计算,牛牛发现申请更换第 i 节课程的教室时,申请被通过的概率是一个已知的实数 ki,并且对于不同课程的申请,被通过的概率是互相独立的。

学校规定,所有的申请只能在学期开始前一次性提交,并且每个人只能选择至多 m 节课程进行申请。这意味着牛牛必须一次性决定是否申请更换每节课的教室,而不能根据某些课程的申请结果来决定其他课程是否申请;牛牛可以申请白己最希望更换教室的 m 门课程,也可以不用完这 m 个申请的机会,甚至可以一门课程都不申请。

因为不同的课程可能会被安排在不同的教室进行,所以牛牛需要利用课问时间从一间教室赶到另一间教室。

牛牛所在的大学有 v 个教室,有 e 条道路。每条道路连接两间教室,并且是可以双向通行的。由于道路的长度和拥堵程度不同,通过不同的道路耗费的体力可能会有所不同。当第 i(1 ≤ i ≤ n - 1)节课结束后,牛牛就会从这节课的教室出发,选择一条耗费体力最少的路径前往下一节课的教室。

现在牛牛想知道,申请哪几门课程可以使他因在教室问移动耗费的体力值的总和的期望值最小,请你帮他求出这个最小值。

输入描述:

第一行四个整数 n,m,v,e 。n 表示这个学期内的时间段的数量;m 表示牛牛最多可以申请更换多少节课程的教室;v 表示牛牛学校里教室的数量;e 表示牛牛的学校里道路的数量。

第二行 n 个正整数,第 i(1 ≤ i ≤ n)个正整数表示 ci,即第 i 个时间段牛牛被安排上课的教室;保证 1 ≤ ci ≤ v。

第三行 n 个正整数,第 i(1 ≤ i ≤ n)个正整数表示 di,即第 i 个时间段另一间上同样课程的教室;保证 1 ≤ di ≤ v。

第四行 n 个实数,第 i(1 ≤ i ≤ n)个实数表示 ki,即牛牛申请在第 i 个时间段更换教室获得通过的概率。保证 0 ≤ ki ≤ 1。

接下来 e 行,每行三个正整数 aj, bj, wj,表示有一条双向道路连接教室 aj, bj,通过这条道路需要耗费的体力值是 Wj;保证 1 ≤ aj, bj ≤ v, 1 ≤ wj ≤ 100。

保证 1 ≤ n ≤ 2000,0 ≤ m ≤ 2000,1 ≤ v ≤ 300,0 ≤ e ≤ 90000。

保证通过学校里的道路,从任何一间教室出发,都能到达其他所有的教室。

保证输入的实数最多包含 3 位小数。

输出描述:

输出一行,包含一个实数,四舎五入精确到小数点后恰好 2 位,表示答案。你的输出必须和标准输出完全一样才算正确。

测试数据保证四舎五入后的答案和准确答案的差的绝对值不大于 4 x 103。(如果你不知道什么是浮点误差,这段话可以理解为:对于大多数的算法,你可以正常地使用浮点数类型而不用对它进行特殊的处理)


毒瘤动态规划,哎,我真的不擅长DP

dp[i][j][0/1]表示前i个教室,换了j次教室,第i次有没有换,最优方案

概率期望有很多难题,如果考试遇到了不会做,那就把出题人吊起来打一顿就多往数学方面想想

状态怎么的就转移就忽略吧

#include<cmath>
#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
using namespace std;
#define db double
#define re register int
const int N=2e3+5;
#define int long long
const db inf=1e17;
int n,m,v,e,c[N][2],f[305][305];
db k[N],dp[N][N][2],ans;
inline void DP(int &i,int &j,int &C1,int &C2,int &C3,int &C4){//dp
dp[i][j][0]=min(dp[i][j][0],dp[i-1][j][0]+f[C1][C3]);
dp[i][j][0]=min(dp[i][j][0],dp[i-1][j][1]+f[C1][C3]*(1-k[i-1])+f[C2][C3]*k[i-1]);
dp[i][j][1]=min(dp[i][j][1],dp[i-1][j-1][0]+f[C1][C3]*(1-k[i])+f[C1][C4]*k[i]);
dp[i][j][1]=min(dp[i][j][1],dp[i-1][j-1][1]+f[C2][C4]*k[i]*k[i-1]+f[C2][C3]*k[i-1]*(1-k[i])+f[C1][C4]*(1-k[i-1])*k[i]+f[C1][C3]*(1-k[i])*(1-k[i-1])); }
inline void askdis(){//预处理路径
for(re K=1;K<=v;K++)
for(re i=1;i<=v;i++)
for(re j=1;j<=v;j++)
f[i][j]=min(f[i][j],f[i][K]+f[K][j]);
for(re i=1;i<=v;i++)f[i][i]=f[i][0]=f[0][i]=0;
}
signed main(){
memset(f,63,sizeof(f));
cin>>n>>m>>v>>e;
for(re i=1;i<=n;i++)scanf("%lld",&c[i][0]);
for(re i=1;i<=n;i++)scanf("%lld",&c[i][1]);
for(re i=1;i<=n;i++)scanf("%lf",&k[i]);
for(re i=1,x,y,w;i<=e;i++){scanf("%lld%lld%lld",&x,&y,&w);f[x][y]=f[y][x]=min(f[x][y],w);}
askdis();
for(re i=0;i<=n;i++)
for(int j=0;j<=m;j++)
dp[i][j][0]=dp[i][j][1]=inf;
dp[1][0][0]=dp[1][1][1]=0;
for(re i=2;i<=n;i++){
dp[i][0][0]=dp[i-1][0][0]+f[c[i-1][0]][c[i][0]];
for(re j=1;j<=min(i,m);j++){
re C1=c[i-1][0],C2=c[i-1][1],C3=c[i][0],C4=c[i][1];
DP(i,j,C1,C2,C3,C4);
}
}
ans=inf;for(re i=0;i<=m;i++)ans=min(ans,min(dp[n][i][0],dp[n][i][1]));
printf("%.2f\n",ans);
}

luogu P1850 换教室的更多相关文章

  1. Luogu P1850 换教室(期望dp)

    P1850 换教室 题意 题目描述 对于刚上大学的牛牛来说,他面临的第一个问题是如何根据实际情况申请合适的课程. 在可以选择的课程中,有\(2n\)节课程安排在\(n\)个时间段上.在第\(i(1\l ...

  2. 【luogu P1850 换教室】 题解

    题目链接:https://www.luogu.org/problemnew/show/P1850 难的不在状态上,难在转移方程. (话说方程写错居然还有84分= =) #include <cst ...

  3. Luogu P1850换教室【期望dp】By cellur925

    题目传送门 首先这个题我们一看它就是和概率期望有关,而大多数时候在OI中遇到他们时,都是与dp相关的. \(Vergil\)学长表示,作为\(NOIp2016\)的当事人,他们考前奶联赛一定不会考概率 ...

  4. bzoj4720 / P1850 换教室(Floyd+期望dp)

    P1850 换教室 先用Floyd把最短路处理一遍,接下来就是重头戏了 用 f [ i ][ j ][ 0/1 ] 表示在第 i 个时间段,发出了 j 次申请(注意不一定成功),并且在这个时间段是否( ...

  5. 洛谷 P1850 换教室 解题报告

    P1850 换教室 题目描述 对于刚上大学的牛牛来说,他面临的第一个问题是如何根据实际情况申请合适的课程. 在可以选择的课程中,有\(2n\)节课程安排在\(n\)个时间段上.在第\(i(1≤i≤n) ...

  6. P1850 换教室

    P1850 换教室 现在有一张图, 有 \(v <= 300\) 个节点 你需要从 \(c_{1}\) 到 \(c_{2}\) 到 \(c_{n} (n <= 2000)\) 现在你有 \ ...

  7. 洛谷——P1850 换教室

    P1850 换教室 有 2n 节课程安排在 nn 个时间段上.在第 i个时间段上,两节内容相同的课程同时在不同的地点进行,其中,牛牛预先被安排在教室 $c_i$​ 上课,而另一节课程在教室 $d_i$ ...

  8. 洛谷 P1850 换教室

    P1850 换教室 题目描述 对于刚上大学的牛牛来说,他面临的第一个问题是如何根据实际情况申请合适的课程. 在可以选择的课程中,有 2n2n 节课程安排在 nn 个时间段上.在第 ii(1 \leq ...

  9. P1850 换教室 期望dp

    P1850 换教室 题目描述 对于刚上大学的牛牛来说,他面临的第一个问题是如何根据实际情况申请合适的课程. 在可以选择的课程中,有 2n2n 节课程安排在 nn 个时间段上.在第 ii(1 \leq ...

随机推荐

  1. Python Socket学习之旅(二)

    Socket函数 注解: Socket的close和shutdown--结束数据传输: close-----关闭本进程的socket id,但链接还是开着的,用这个socket id的其它进程还能用这 ...

  2. Git如何fork别人的仓库并作为贡献者提交代码

    例如 要fork一份google的MLperf/inference代码,下面介绍具体做法:预备知识git里的参考有几种表示,分别是上游仓库,远程仓库和本地仓库,逻辑关系如下拉取代码的顺序:别的大牛的代 ...

  3. 2019CSP day1t1 格雷码

    题目描述 通常,人们习惯将所有 \(n\) 位二进制串按照字典序排列,例如所有 \(2\) 位二进制串按字典序从小到大排列为:\(00,01,11,10\). 格雷码(\(Gray Code\))是一 ...

  4. 易语言 史诗级Json处理 烁_Json模块!!!!

    大家好,我是键盘上的魔手 * “************************”* “** 欢迎使用烁Json模块 **”* “** 作者:键盘上的魔手 **”* “**  微信号:codervip ...

  5. 理解Spark SQL(二)—— SQLContext和HiveContext

    使用Spark SQL,除了使用之前介绍的方法,实际上还可以使用SQLContext或者HiveContext通过编程的方式实现.前者支持SQL语法解析器(SQL-92语法),后者支持SQL语法解析器 ...

  6. oracle日期时间范围查询

    Oracle的日期时间范围查询 字段为:字符串类型(char),长度为:10 SELECT * FROM testdatetime t WHERE = AND t.createdate >= ' ...

  7. 最新版 IDEA 2019.2.4 下载安装 & 破解使用期限至2089年

    一.准备 官网下载链接:https://www.jetbrains.com/idea/download/#section=windows 根据自己系统选择对应版本,这里选择Windows的UItima ...

  8. windows下大数据开发环境搭建(1)——Hadoop环境搭建

    所需环境 jdk 8 Hadoop下载 http://hadoop.apache.org/releases.html 配置环境变量 HADOOP_HOME: C:\hadoop-2.7.7 Path: ...

  9. 缓冲&缓存&对象池概念的理解

    一).缓冲 作用:缓解程序上下层之间的性能差异. 1).当上层组件的性能优于下层组件时加入缓冲机制可以减少上层组件对下 层组件的等待时间. 2).上层组件不需要等待下层组件接收全部数据,即可返回操作, ...

  10. caffe网络在多线程中无法使用GPU的解决方案 | cpp caffe net run in multiple threads

    本文首发于个人博客https://kezunlin.me/post/8d877e63/,欢迎阅读! cpp caffe net run in multiple threads Guide set_mo ...