函数名 功能
Language 求已知数据点的拉格朗日插值多项式
Atken 求已知数据点的艾特肯插值多项式
Newton 求已知数据点的均差形式的牛顿插值多项式
Newtonforward 求已知数据点的前向牛顿差分插值多项式
Newtonback 求已知数据点的后向牛顿差分插值多项式
Gauss 求已知数据点的高斯插值多项式
Hermite 求已知数据点的埃尔米特插值多项式
SubHermite 求已知数据点的分段三次埃尔米特插值多项式及其插值点处的值
SecSample 求已知数据点的二次样条插值多项式及其插值点处的值
ThrSample1 求已知数据点的第一类三次样条插值多项式及其插值点处的值
ThrSample2 求已知数据点的第二类三次样条插值多项式及其插值点处的值
ThrSample3 求已知数据点的第三类三次样条插值多项式及其插值点处的值
BSample 求已知数据点的第一类B样条的插值
DCS 用倒差商算法求已知数据点的有理分式形式的插值分式
Neville 用Neville算法求已知数据点的有理分式形式的插值分式
FCZ 用倒差商算法求已知数据点的有理分式形式的插值分式
DL 用双线性插值求已知点的插值
DTL 用二元三点拉格朗日插值求已知点的插值
DH 用分片双三次埃尔米特插值求插值点的z坐标

function f = Atken(x,y,x0)
syms t;
if(length(x) == length(y))
n = length(x);
else
disp('x和y的维数不相等!');
return;
end %检错

y1(1:n) = t; %符号函数数组要赋初值
for(i=1:n-1)
for(j=i+1:n)
y1(j) = y(j)*(t-x(i))/(x(j)-x(i))+y(i)*(t-x(j))/(x(i)-x(j));
end
y = y1;
simplify(y1);
end

if(nargin == 3)
f = subs(y1(n),'t',x0); %计算插值点的函数值
else
simplify(y1(n)); %化简
f = collect(y1(n)); %将插值多项式展开
f = vpa(f,6); %将插值多项式的系数化成6位精度的小数
end

function f0 = BSample(a,b,n,y,y_1,y_N,x0)
f0 = 0.0;
h = (b-a)/n;
c = zeros(n+3,1);
b = zeros(n+1,1);

for i=0:n-1
if(a+i*h<=x0) && (a+i*h+h>=x0)
index = i;
break;
end
end %找到x0所在区间

A = diag(4*ones(n+1,1));
I = eye(n+1,n+1);
AL = [I(2:n+1,:);zeros(1,n+1)];
AU = [zeros(1,n+1);I(1:n,:)];
A = A+AL+AU; %形成系数矩阵
for i=2:n
b(i,1) = 6*y(i);
end
b(1) = 6*y(1)+2*h*y_1;
b(n+1) = 6*y(n+1)-2*h*y_N;
d = followup(A,b); %用追赶法求出系数
c(2:n+2) = d;
c(1) = c(2) - 2*h*y_1; %c(-1)
c(n+3) = c(3)+2*h*y_N; %c(n+1)

x1 = (a+index*h-h-x0)/h;
m1 = c(index+1)*(-((abs(x1))^3)/6+(x1)^2-2*abs(x1)+4/3);
x2 = (a+index*h-x0)/h;
m2 = c(index+2)*((abs(x2))^3/2-(x2)^2+2/3);
x3 = (a+index*h+h-x0)/h;
m3 = c(index+3)*((abs(x3))^3/2-(x3)^2+2/3);
x4 = (a+index*h+2*h-x0)/h;
m4 = c(index+4)*(-((abs(x4))^3)/6+(x4)^2-2*abs(x4)+4/3);
f0 = m1+m2+m3+m4; %求出插值

function f = DCS(x,y,x0)
syms t;

if(length(x) == length(y))
n = length(x);
c(1:n) = 0.0;
else
disp('x和y的维数不相等!');
return;
end

c(1) = y(1);
for(i=1:n-1)
for(j=i+1:n)
y1(j) = (x(j)-x(i))/(y(j)-y(i));
end
c(i+1) = y1(i+1);
y = y1;
end

f = c(n);
for(i=1:n-1)
f = c(n-i) + (t-x(n-i))/f;
f = vpa(f,6);
if(i==n-1)
if(nargin == 3)
f = subs(f,'t',x0);
else
f = vpa(f,6);
end
end
end;

function fz = DH(x,y,x0,y0,zx,zy,zxy)
n = length(x);
m = length(y);

for i=1:n
if(x(i)<=x0)&& (x(i+1)>=x0)
index_x = i;
break;
end
end %找到x0所在区间
for i=1:m
if(y(i)<=y0)&& (y(i+1)>=y0)
index_y = i;
break;
end
end %找到y0所在区间
hx = x(index_x+1) - x(index_x);
hy = y(index_y+1) - y(index_y);
tx = (x0 - x(index_x))/hx; %插值坐标归一化
ty = (y0 - y(index_y))/hy; %插值坐标归一化

Hl = [(1-tx)^2*(1+2*tx) tx*tx*(3-2*tx) tx*(1-tx)^2 tx*tx*(tx-1)]; %左向量
Hr = [(1-ty)^2*(1+2*ty); ty*ty*(3-2*ty); ty*(1-ty)^2 ; ty*ty*(ty-1)]; %右向量
C = [Z(index_x, index_y) Z(index_x,index_y+1) zy(index_x, index_y) ...
zy(index_x, index_y+1);
Z(index_x+1, index_y) Z(index_x+1,index_y+1) zy(index_x+1, index_y) ...
zy(index_x+1, index_y+1);
zx(index_x, index_y) zy(index_x, index_y+1) zxy(index_x, index_y) ...
zxy(index_x, index_y+1);
zx(index_x+1, index_y) zy(index_x+1, index_y+1) zxy(index_x+1, index_y) ...
zxy(index_x+1, index_y+1)]; %C矩阵
fz = Hl*C*Hr;

function fz = DL(x,y,Z,x0,y0,eps)
n = length(x);
m = length(y);

for i=1:n
if(x(i)<=x0)&& (x(i+1)>=x0)
index_x = i;
break;
end
end %找到x0所在区间
for i=1:m
if(y(i)<=y0)&& (y(i+1)>=y0)
index_y = i;
break;
end
end %找到y0所在区间

A = [1 x(index_x) y(index_y) x(index_x)* y(index_y);
1 x(index_x+1) y(index_y+1) x(index_x+1)* y(index_y+1);
1 x(index_x) y(index_y+1) x(index_x)* y(index_y+1);
1 x(index_x+1) y(index_y) x(index_x+1)* y(index_y)];
iA = inv(A);
B = iA*[Z(index_x,index_y); Z(index_x+1,index_y+1); Z(index_x,index_y+1);
Z(index_x+1,index_y)];
fz = [1 x0 y0 x0*y0]*B;

function fz = DTL(x,y,Z,x0,y0)
syms s t;
f = 0.0;
n = length(x);
m = length(y);

for i=1:n
if(x(i)<=x0)&& (x(i+1)>=x0)
index_x = i;
break;
end
end %找到x0所在区间
for i=1:m
if(y(i)<=y0)&& (y(i+1)>=y0)
index_y = i;
break;
end
end %找到y0所在区间

if index_x == 1
cx(1:3) = index_x:(index_x+2);
else
if index_x == n-1
cx(1:3) = (index_x-1):(index_x+1);
else
if abs(x(index_x-1)-x0)>abs(x(index_x+2)-x0)
cx(1:3) = (index_x):(index_x+2);
else
cx(1:3) = (index_x-1):(index_x+1);
end
end
end %找到离x0最近的三个x坐标

if index_y == 1
cy(1:3) = index_y:(index_y+2);
else
if index_y == m-1
cy(1:3) = (index_y-1):(index_y+1);
else
if abs(y(index_y-1)-y0)>=abs(y(index_y+2)-y0)
cy(1:3) = (index_y):(index_y+2);
else
cy(1:3) = (index_y-1):(index_y+1);
end
end
end %找到离y0最近的三个y坐标

for i=1:3
i1 = mod(i+1,3);
if(i1 == 0)
i1 = 3;
end
i2 = mod(i+2,3);
if(i2 == 0)
i2 = 3;
end
for j=1:3
j1 = mod(j+1,3);
if(j1 == 0)
j1 = 3;
end
j2 = mod(j+2,3);
if(j2 == 0)
j2 = 3;
end
f = f+Z(cx(i),cy(j))*((t-x(cx(i1)))*(t-x(cx(i2)))/(x(cx(i))-x(cx(i1)))/(x(cx(i))-x(cx(i2))))* ...
(s-y(cy(j1)))*(s-y(cy(j2)))/(y(cy(j))-y(cy(j1)))/(y(cy(j))-y(cy(j2)));
%插值多项式
end
end
fz = subs(f,'[t s]',[x0 y0]);

function [f,x0] = FCZ(x,y,y0)
syms t;
if(length(x) == length(y))
n = length(x);
c(1:n) = 0.0;
else
disp('x和y的维数不相等!');
return;
end

c(1) = x(1);
y1 = x;
for(i=1:n-1)
for(j=i+1:n)
y2(j) = (y1(j)-y1(i))/(y(j)-y(i));
end
c(i+1) = y2(i+1);
y1 = y2;
end

f = c(1);
for(i=1:n-1)
ff = c(i+1);
for(j=1:i)
ff = ff*(t-y(j));
end
f = f + ff;
end;
x0 = subs(f,'t',y0);

function f = Gauss(x,y,x0)

if(length(x) == length(y))
n = length(x);
else
disp('x和y的维数不相等!');
return;
end

xx =linspace(x(1),x(n),(x(2)-x(1)));
if(xx ~= x)
disp('节点之间不是等距的!');
return;
end

if( mod(n,2) ==1)
if(nargin == 2)
f = GStirling(x,y,n);
else if(nargin == 3)
f = GStirling(x,y,n,x0);
end
end
else
if(nargin == 2)
f = GBessel(x,y,n);
else if(nargin == 3)
f = GBessel(x,y,n,x0);
end
end
end

function f = GStirling(x,y,n,x0)
syms t;
nn = (n+1)/2;
f = y(nn);

for(i=1:n-1)
for(j=i+1:n)
y1(j) = y(j)-y(j-1);
end
if(mod(i,2)==1)
c(i) = (y1((i+n)/2)+y1((i+n+2)/2))/2;
else
c(i) = y1((i+n+1)/2)/2;
end

if(mod(i,2)==1)
l = t+(i-1)/2;
for(k=1:i-1)
l = l*(t+(i-1)/2-k);
end
else
l_1 = t+i/2-1;
l_2 = t+i/2;
for(k=1:i-1)
l_1 = l_1*(t+i/2-1-k);
l_2 = l_2*(t+i/2-k);
end
l = l_1 + l_2;
end

l = l/factorial(i);
f = f + c(i)*l;
simplify(f);
f = vpa(f, 6);
y = y1;

if(i==n-1)
if(nargin == 4)
f = subs(f,'t',(x0-x(nn))/(x(2)-x(1)));
end
end
end

function f = GBessel(x,y,n,x0)
syms t;
nn = n/2;
f = (y(nn)+y(nn+1))/2;

for(i=1:n-1)
for(j=i+1:n)
y1(j) = y(j)-y(j-1);
end
if(mod(i,2)==1)
c(i) = y1((i+n+1)/2)/2;
else
c(i) = (y1((i+n)/2)+y1((i+n+2)/2))/2;
end

if(mod(i,2)==0)
l = t+i/2-1;
for(k=1:i-1)
l = l*(t+i/2-1-k);
end
else
l_1 = t+(i-1)/2;
l_2 = t+(i-1)/2-1;
for(k=1:i-1)
l_1 = l_1*(t+(i-1)/2-k);
l_2 = l_2*(t+(i-1)/2-1-k);
end
l = l_1 + l_2;
end

l = l/factorial(i);
f = f + c(i)*l;
simplify(f);
f = vpa(f, 6);
y = y1;

if(i==n-1)
if(nargin == 4)
f = subs(f,'t',(x0-x(nn))/(x(2)-x(1)));
end
end
end

function f = Hermite(x,y,y_1,x0)
syms t;
f = 0.0;

if(length(x) == length(y))
if(length(y) == length(y_1))
n = length(x);
else
disp('y和y的导数的维数不相等!');
return;
end
else
disp('x和y的维数不相等!');
return;
end

for i=1:n
h = 1.0;
a = 0.0;
for j=1:n
if( j ~= i)
h = h*(t-x(j))^2/((x(i)-x(j))^2);
a = a + 1/(x(i)-x(j));
end
end

f = f + h*((x(i)-t)*(2*a*y(i)-y_1(i))+y(i));

if(i==n)
if(nargin == 4)
f = subs(f,'t',x0);
else
f = vpa(f,6);
end
end
end

function f = Language(x,y,x0)
syms t;
if(length(x) == length(y))
n = length(x);
else
disp('x和y的维数不相等!');
return;
end %检错

f = 0.0;
for(i = 1:n)
l = y(i);
for(j = 1:i-1)
l = l*(t-x(j))/(x(i)-x(j));
end;
for(j = i+1:n)
l = l*(t-x(j))/(x(i)-x(j)); %计算拉格朗日基函数
end;

f = f + l; %计算拉格朗日插值函数
simplify(f); %化简

if(i==n)
if(nargin == 3)
f = subs(f,'t',x0); %计算插值点的函数值
else
f = collect(f); %将插值多项式展开
f = vpa(f,6); %将插值多项式的系数化成6位精度的小数
end
end
end

function f = Neville(x,y,x0)
syms t;

if(length(x) == length(y))
n = length(x);
else
disp('x和y的维数不相等!');
return;
end

y1(1:n) = t;
for(i=1:n-1)
for(j=i+1:n)
if(j==2)
y1(j) = y(j)+(y(j)-y(j-1))/((t-x(j-i))/(t-x(j)))*(1-(y(j)-y(j-1))/y(j));
else
y1(j) = y(j)+(y(j)-y(j-1))/((t-x(j-i))/(t-x(j)))*(1-(y(j)-y(j-1))/(y(j)-y(j-2)));
end
end
y = y1;
if(i==n-1)
if(nargin == 3)
f = subs(y(n-1),'t',x0);
else
f = vpa(y(n-1),6);
end
end

end

function f = Newton(x,y,x0)
syms t;

if(length(x) == length(y))
n = length(x);
c(1:n) = 0.0;
else
disp('x和y的维数不相等!');
return;
end

f = y(1);
y1 = 0;
l = 1;

for(i=1:n-1)
for(j=i+1:n)
y1(j) = (y(j)-y(i))/(x(j)-x(i));
end
c(i) = y1(i+1);
l = l*(t-x(i));
f = f + c(i)*l;
simplify(f);
y = y1;

if(i==n-1)
if(nargin == 3)
f = subs(f,'t',x0);
else
f = collect(f); %将插值多项式展开
f = vpa(f, 6);
end
end
end

function f = Newtonback(x,y,x0)
syms t;

if(length(x) == length(y))
n = length(x);
c(1:n) = 0.0;
else
disp('x和y的维数不相等!');
return;
end

f = y(n);
y1 = 0;

xx =linspace(x(1),x(n),(x(2)-x(1)));
if(xx ~= x)
disp('节点之间不是等距的!');
return;
end

for(i=1:n-1)
for(j=i+1:n)
y1(j) = y(j)-y(j-1);
end
c(i) = y1(n);
l = t;
for(k=1:i-1)
l = l*(t+k);
end;

f = f + c(i)*l/factorial(i);
simplify(f);
y = y1;

if(i==n-1)
if(nargin == 3)
f = subs(f,'t',(x0-x(n))/(x(2)-x(1)));
else
f = collect(f);
f = vpa(f, 6);
end
end
end

function f = Newtonforward(x,y,x0)
syms t;

if(length(x) == length(y))
n = length(x);
c(1:n) = 0.0;
else
disp('x和y的维数不相等!');
return;
end

f = y(1);
y1 = 0;

xx =linspace(x(1),x(n),(x(2)-x(1)));
if(xx ~= x)
disp('节点之间不是等距的!');
return;
end

for(i=1:n-1)
for(j=1:n-i)
y1(j) = y(j+1)-y(j);
end
c(i) = y1(1);
l = t;
for(k=1:i-1)
l = l*(t-k);
end;

f = f + c(i)*l/factorial(i);
simplify(f);
y = y1;

if(i==n-1)
if(nargin == 3)
f = subs(f,'t',(x0-x(1))/(x(2)-x(1)));
else
f = collect(f);
f = vpa(f, 6);
end
end
end

function [f,f0,fd0] = SecSample (x,y,y_1,x0)
syms t;
f = 0.0;
f0 = 0.0;

if(length(x) == length(y))
if(length(y) == length(y_1))
n = length(x);
else
disp('y和y的导数的维数不相等!');
return;
end
else
disp('x和y的维数不相等!');
return;
end %维数检查

for i=1:n
if(x(i)<=x0)&& (x(i+1)>=x0)
index = i;
break;
end
end %找到x0所在区间

d = y_1(1)*(x(2)-x(1))/2+y(1);
for i=2:n-1
d = d + y_1(i)*(x(i+1)-x(i-1))/2;
end

h = x(index+1) - x(index); %x0所在区间长度
f = y_1(index+1)*(t-x(index))^2/2/h + ...
y_1(index)*(t-x(index+1))^2/2/h + d; %x0所在区间的插值函数
fd = (t-x(index))*y_1(index+1)/h + y_1(index)*(x(index+1)-t)/h;
%x0所在区间的插值函数的导数
f0 = subs(f,'t',x0); %x0处的插值
fd0 = subs(fd,'t',x0); % x0处的导数插值

function [f,f0] = SubHermite(x,y,y_1,x0)
syms t;
f = 0.0;
f0 = 0.0;

if(length(x) == length(y))
if(length(y) == length(y_1))
n = length(x);
else
disp('y和y的导数的维数不相等!');
return;
end
else
disp('x和y的维数不相等!');
return;
end %维数检查

for i=1:n
if(x(i)<=x0)&& (x(i+1)>=x0)
index = i;
break;
end
end %找到x0所在区间

h = x(index+1) - x(index); %x0所在区间长度
fl = y(index)*(1+2*(t-x(index))/h)*(t-x(index+1))^2/h/h + ...
y(index+1)*(1-2*(t-x(index+1))/h)*(t-x(index))^2/h/h;
fr = y_1(index)*(t-x(index))*(t-x(index+1))^2/h/h + ...
y_1(index+1)*(t-x(index+1))*(t-x(index))^2/h/h;
f = fl + fr; %x0所在区间的插值函数
f0 = subs(f,'t',x0); %x0处的插值

function [f,f0] = ThrSample1 (x,y,y_1, y_N,x0)
syms t;
f = 0.0;
f0 = 0.0;

if(length(x) == length(y))
n = length(x);
else
disp('x和y的维数不相等!');
return;
end %维数检查

for i=1:n
if(x(i)<=x0)&& (x(i+1)>=x0)
index = i;
break;
end
end %找到x0所在区间

for i=1:n
if(x(i)<=x0)&& (x(i+1)>=x0)
index = i;
break;
end
end %找到x0所在区间

A = diag(2*ones(1,n)); %求解m的系数矩阵
u = zeros(n-2,1);
lamda = zeros(n-1,1);
c = zeros(n,1);
for i=2:n-1
u(i-1) = (x(i)-x(i-1))/(x(i+1)-x(i-1));
lamda(i) = (x(i+1)-x(i))/(x(i+1)-x(i-1));
c(i) = 3*lamda(i)*(y(i)-y(i-1))/(x(i)-x(i-1))+ ...
3*u(i-1)*(y(i+1)-y(i))/(x(i+1)-x(i));
A(i, i+1) = u(i-1);
A(i, i-1) = lamda(i); %形成系数矩阵及向量c
end
c(1) = 2*y_1;
c(n) = 2*y_N;

m = followup(A,c); %用追赶法求解方程组
h = x(index+1) - x(index); %x0所在区间长度
f = y(index)*(2*(t-x(index))+h)*(t-x(index+1))^2/h/h/h + ...
y(index+1)*(2*(x(index+1)-t)+h)*(t-x(index))^2/h/h/h + ...
m(index)*(t-x(index))*(x(index+1)-t)^2/h/h - ...
m(index+1)*(x(index+1)-t)*(t-x(index))^2/h/h;
%x0所在区间的插值函数
f0 = subs(f,'t',x0); %x0处的插值

function [f,f0] = ThrSample2 (x,y,y2_1, y2_N,x0)
syms t;
f = 0.0;
f0 = 0.0;

if(length(x) == length(y))
n = length(x);
else
disp('x和y的维数不相等!');
return;
end %维数检查

for i=1:n
if(x(i)<=x0)&& (x(i+1)>=x0)
index = i;
break;
end
end %找到x0所在区间

for i=1:n
if(x(i)<=x0)&& (x(i+1)>=x0)
index = i;
break;
end
end %找到x0所在区间

A = diag(2*ones(1,n)); %求解m的系数矩阵
A(1,2) = 1;
A(n,n-1) = 1;
u = zeros(n-2,1);
lamda = zeros(n-1,1);
c = zeros(n,1);
for i=2:n-1
u(i-1) = (x(i)-x(i-1))/(x(i+1)-x(i-1));
lamda(i) = (x(i+1)-x(i))/(x(i+1)-x(i-1));
c(i) = 3*lamda(i)*(y(i)-y(i-1))/(x(i)-x(i-1))+ ...
3*u(i-1)*(y(i+1)-y(i))/(x(i+1)-x(i));
A(i, i+1) = u(i-1);
A(i, i-1) = lamda(i); %形成系数矩阵及向量c
end
c(1) = 3*(y(2)-y(1))/(x(2)-x(1))-(x(2)-x(1))*y2_1/2;
c(n) = 3*(y(n)-y(n-1))/(x(n)-x(n-1))-(x(n)-x(n-1))*y2_N/2;

m = followup(A,c); %用追赶法求解方程组
h = x(index+1) - x(index); %x0所在区间长度
f = y(index)*(2*(t-x(index))+h)*(t-x(index+1))^2/h/h/h + ...
y(index+1)*(2*(x(index+1)-t)+h)*(t-x(index))^2/h/h/h + ...
m(index)*(t-x(index))*(x(index+1)-t)^2/h/h - ...
m(index+1)*(x(index+1)-t)*(t-x(index))^2/h/h;
%x0所在区间的插值函数
f0 = subs(f,'t',x0); %x0处的插值

function [f,f0] = ThrSample3 (x,y,x0)
syms t;
f = 0.0;
f0 = 0.0;

if(length(x) == length(y))
n = length(x);
else
disp('x和y的维数不相等!');
return;
end %维数检查

for i=1:n
if(x(i)<=x0)&& (x(i+1)>=x0)
index = i;
break;
end
end %找到x0所在区间

for i=1:n
if(x(i)<=x0)&& (x(i+1)>=x0)
index = i;
break;
end
end %找到x0所在区间

A = diag(2*ones(1,n-1)); %求解m的系数矩阵
h0 = x(2)-x(1);
h1 = x(3)–x(2);
he = x(n)-x(n-1);
A(1,2) = h0/(h0+h1);
A(1,n-1) = 1 - A(1,2);
A(n-1,1) = he/(h0+he);
A(n-1,n-2) = 1 - A(n-1,1);

c = zeros(n-1,1);
c(1) = 3* A(1,n-1)*(y(2)-y(1))/h0 + 3* A(1,2)*(y(3)-y(2))/h1;
for i=2:n-2
u = (x(i)-x(i-1))/(x(i+1)-x(i-1));
lamda = (x(i+1)-x(i))/(x(i+1)-x(i-1));
c(i) = 3*lamda*(y(i)-y(i-1))/(x(i)-x(i-1))+ ...
3*u*(y(i+1)-y(i))/(x(i+1)-x(i));
A(i, i+1) = u;
A(i, i-1) = lamda; %形成系数矩阵及向量c
end
c(n-1) = 3*( he*(y(2)-y(1))/h0+h0*( y(n)-y(n-1))/he)/(h0+he);

m = zeros(n,1);
[m(2:n),Q,R] = qrxq(A,c); %用qr分解法法求解方程组
m(1) = m(n);
h = x(index+1) - x(index); %x0所在区间长度
f = y(index)*(2*(t-x(index))+h)*(t-x(index+1))^2/h/h/h + ...
y(index+1)*(2*(x(index+1)-t)+h)*(t-x(index))^2/h/h/h + ...
m(index)*(t-x(index))*(x(index+1)-t)^2/h/h - ...
m(index+1)*(x(index+1)-t)*(t-x(index))^2/h/h;
%x0所在区间的插值函数
f0 = subs(f,'t',x0); %x0处的插值

插值代码17个---MATLAB的更多相关文章

  1. 机器学习-一对多(多分类)代码实现(matlab)

    %% Machine Learning Online Class - Exercise 3 | Part 1: One-vs-all % Instructions % ------------ % % ...

  2. 机器学习-反向传播算法(BP)代码实现(matlab)

    %% Machine Learning Online Class - Exercise 4 Neural Network Learning % Instructions % ------------ ...

  3. 线性回归代码实现(matlab)

    1 代价函数实现(cost function) function J = computeCost(X, y, theta) %COMPUTECOST Compute cost for linear r ...

  4. 如何加速MATLAB代码运行

    学习笔记 V1.0 2015/4/17 如何加速MATLAB代码运行 概述 本文源于LDPCC的MATLAB代码,即<CCSDS标准的LDPC编译码仿真>.由于代码的问题,在信息位长度很长 ...

  5. 多项式函数插值:全域多项式插值(一)单项式基插值、拉格朗日插值、牛顿插值 [MATLAB]

    全域多项式插值指的是在整个插值区域内形成一个多项式函数作为插值函数.关于多项式插值的基本知识,见“计算基本理论”. 在单项式基插值和牛顿插值形成的表达式中,求该表达式在某一点处的值使用的Horner嵌 ...

  6. MATLAB Coder从MATLAB生成C/C++代码步骤

    MATLAB Coder可以从MATLAB代码生成独立的.可读性强.可移植的C/C++代码. 使用MATLAB Coder产生代码的3个步骤: 准备用于产生代码的MATLAB算法: 检查MATLAB代 ...

  7. Matlab程序 转C++/Opencv基于Mat 不可不知的17个函数

    1.matlab中的imread相当于OpenCV中的cvLoadImage(imageName,  CV_LOAD_IAMGE_ANYDEPTH | CV_LOAD_IMAGE_ANYCOLOR): ...

  8. 调试和运行matlab代码(源程序)的技巧和教程

    转载请标明出处:专注matlab代码下载的网站http://www.downma.com/ 本文主要给大家分享使用matlab编写代码,完成课程设计.毕业设计或者研究项目时,matlab调试程序的技巧 ...

  9. 高斯混合模型(GMM)及MATLAB代码

    之前在学习中遇到高斯混合模型,卡了很长一段时间,在这里记下学习中的一些问题以及解决的方法.希望看到这篇文章的同学们对高斯混合模型能有一些基本的概念.全文不废话,直接上重点. 本文将从以下三个问题详解高 ...

随机推荐

  1. 【原创】Linux基础之SSH秘钥登录

    官方:https://www.ssh.com/ssh/ The SSH protocol uses encryption to secure the connection between a clie ...

  2. 【原创】大叔问题定位分享(15)spark写parquet数据报错ParquetEncodingException: empty fields are illegal, the field should be ommited completely instead

    spark 2.1.1 spark里执行sql报错 insert overwrite table test_parquet_table select * from dummy 报错如下: org.ap ...

  3. Codeforces 1083C Max Mex [线段树]

    洛谷 Codeforces 思路 很容易发现答案满足单调性,可以二分答案. 接下来询问就转换成判断前缀点集是否能组成一条链. 我最初的想法:找到点集的直径,判断直径是否覆盖了所有点,需要用到树套树,复 ...

  4. Python中的 @staticmethod@classmethod方法

    python类中有三种方法,常见的是实例方法,另外两种是staticmethod装饰的静态方法,和classmethod装饰的类方法. 1.对比 流畅的python里,用一个例子进行了对比: (1)两 ...

  5. HDU 2196 Compute --树形dp

    Computer Time Limit: 1000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Su ...

  6. 传输层的端口与TCP标志中的URG和PSH位

    一.协议端口号的提出 运输层提供了进程间通信的能力(即端-端通信).但是不同的操作系统可能无法识别其他机器上的进程.为了用统一的方法对 TCP/IP体系的应用进程进行标志,使运行不同操作系统的计算机的 ...

  7. 527D.Clique Problem

    题解: 水题 两种做法: 1.我的 我们假设$xi>xj$ 那么拆开绝对值 $$xi-w[i]>x[j]+w[j]$$ 由于$w[i]>0$,所以$x[i]+w[i]>x[j] ...

  8. Laravel日常使用总结

    字段当做键值key 集合的keyBy()方法详情:戳这里 创建模型类和数据库迁移文件 php artisan make:model Post -m 创建控制器和基础的方法 php artisan ma ...

  9. Pok 使用指南

    Pok 使用指南 POK 是一个开源的符合ARINC653的操作系统,因为一些原因,我要开始接触一个全新的领域,再此希望记录下每天点滴进步,同时也欢迎指正吧. 目前先简单说明POK的使用指南 获取源码 ...

  10. LOJ.2865.[IOI2018]狼人(Kruskal重构树 主席树)

    LOJ 洛谷 这题不就是Peaks(加强版)或者归程么..这算是\(IOI2018\)撞上\(NOI2018\)的题了? \(Kruskal\)重构树(具体是所有点按从小到大/从大到小的顺序,依次加入 ...