快速幂 ,快速幂优化,矩形快速幂(java)
快速幂形式
public static int f(int a,int b,int c){
int ans =1;
int base=a;
while(b!=0){
if((b&1)!=0)
ans=(ans*base)%c;
base=(base*base)%c;
}
return ans;
}
快速乘法幂(优化)
幂转换成乘法,乘法转化成加法
public static int f(int a,int b,int c){
int ans = 0;
int base=a;
while(b!=0){
if((b&1)!=0)
ans=(ans+base)%c;
base=(base+base)%c;
b>>=1;
}
return ans;
}
public static int f1(int a,int b,int c){
int ans =1;
int base = a;
while(b!=0){
if((b&1)!=0)
ans= f(ans, base, c);
base=f(base, base, c);
b>>=1;
}
return ans;
}
矩阵快速幂
将快速幂里边的1换成一个单位矩阵,然后利用矩阵相乘。
public static long[][] mut(int k,int n,long[][]A){
long [][]res = new long[n][n];
for(int i=0;i<res.length;i++)
res[i][i]=1;
while(k!=0){
if((k&1)!=0)
res=f(res,A);
A=f(A,A);
k>>=1;
}
return res;
}
public static long[][] f(long[][]A,long[][] B){
long res[][]=new long[A.length][B.length];
for(int i=0;i<res.length;i++)
for(int j=0;j<res[0].length;j++){
for(int k=0;k<B.length;k++){
res[i][j]+=A[i][k]*B[k][j];
}
}
return res;
}
例题:蓝桥杯 --加强的斐波那契
斐波那契数列大家都非常熟悉。它的定义是:
f(x) = 1 .... (x=1,2)
f(x) = f(x-1) + f(x-2) .... (x> 2)
对于给定的整数 n 和 m,我们希望求出:
f(1) + f(2) + ... + f(n) 的值。但这个值可能非常大,所以我们把它对 f(m) 取模。
import java.util.*;
public class Main8 { //基本上是按模板写的
public static long[][] mut(int k,int n,long[][]A){
long [][]res = new long[n][n];
res[1][1]=1;
res[1][0]=0;
res[0][1]=0;
res[0][0]=1;
while(k!=0){
if((k&1)!=0)
res=f(res,A);
A=f(A,A);
k>>=1;
}
return res;
}
public static long[][] f(long[][]A,long[][] B){
long res[][]=new long[A.length][B.length];
for(int i=0;i<res.length;i++)
for(int j=0;j<res[0].length;j++){
for(int k=0;k<B.length;k++){
res[i][j]+=A[i][k]*B[k][j];
}
}
return res;
}
public static void main(String[] args) {
Scanner sc = new Scanner(System.in);
int n = sc.nextInt();
long a[][]=new long [2][2];
a[0][0]=1;
a[1][1]=0;
a[0][1]=1;
a[1][0]=1;
long d[][]=mut(n-1,2,a );
System.out.println(d[0][0]%1000000009);
}
}
快速幂 ,快速幂优化,矩形快速幂(java)的更多相关文章
- 【板子】gcd、exgcd、乘法逆元、快速幂、快速乘、筛素数、快速求逆元、组合数
1.gcd int gcd(int a,int b){ return b?gcd(b,a%b):a; } 2.扩展gcd )extend great common divisor ll exgcd(l ...
- Luogu 3390 【模板】矩阵快速幂 (矩阵乘法,快速幂)
Luogu 3390 [模板]矩阵快速幂 (矩阵乘法,快速幂) Description 给定n*n的矩阵A,求A^k Input 第一行,n,k 第2至n+1行,每行n个数,第i+1行第j个数表示矩阵 ...
- 「干货」面试官问我如何快速搜索10万个矩形?——我说RBush
「干货」面试官问我如何快速搜索10万个矩形?--我说RBUSH 前言 亲爱的coder们,我又来了,一个喜欢图形的程序员,前几篇文章一直都在教大家怎么画地图.画折线图.画烟花,难道图形就是这样嘛,当 ...
- 微信快速开发框架(六)-- 微信快速开发框架(WXPP QuickFramework)V2.0版本上线--源码已更新至github
4月28日,已增加多媒体上传及下载API,对应MediaUploadRequest和MediaGetRequest ------------------------------------------ ...
- 怎么关闭win10快速访问功能?关闭Windows10系统快速访问方法
怎么关闭win10快速访问功能?关闭Windows10系统快速访问方法 Windows10系统的"快速访问"功能很容易泄露电脑中的隐私,用什么方法可以让这个功能消失,避免电脑的个人 ...
- ASP.NET Core模块化前后端分离快速开发框架介绍之2、快速创建一个业务模块
源码地址 GitHub:https://github.com/iamoldli/NetModular 演示地址 地址:https://nm.iamoldli.com 账户:admin 密码:admin ...
- Serverless 初体验:快速开发与部署一个Hello World(Java版)
昨天被阿里云的这个酷炫大屏吸引了! 我等85后开发者居然这么少!挺好奇到底什么鬼东西都是90.95后在玩?就深入看了一下. 这是一个关于Serverless的体验活动,Serverless在国内一直都 ...
- poj 3735 Training little cats 矩阵快速幂+稀疏矩阵乘法优化
题目链接 题意:有n个猫,开始的时候每个猫都没有坚果,进行k次操作,g x表示给第x个猫一个坚果,e x表示第x个猫吃掉所有坚果,s x y表示第x个猫和第y个猫交换所有坚果,将k次操作重复进行m轮, ...
- POJ 3735 Training little cats<矩阵快速幂/稀疏矩阵的优化>
Training little cats Time Limit: 2000MS Memory Limit: 65536K Total Submissions: 13488 Accepted: ...
随机推荐
- 推荐.Net、C# 逆向反编译四大工具利器
转自:https://blog.csdn.net/kongwei521/article/details/54927689 在项目开发过程中,估计也有人和我遇到过同样的经历:运行环境出现了重大Bug亟需 ...
- [经验交流] kubeadm 安装 kubernetes 一年过期的解决办法
kubeadm 是 kubernetes 提供的一个初始化集群的工具,使用起来非常方便.但是它创建的apiserver.controller-manager等证书默认只有一年的有效期,同时kubele ...
- 【R】资源整理
1.25本Python电子书 http://python.jobbole.com/29281/ Think Stats Dive Into Python A Byte Of Python Think ...
- fiddler抓包——IOS
fiddler抓包——IOS1.在fiddler上安装证书CertMakerhttps://www.telerik.com/fiddler/add-ons安装可以参考:https://blog.csd ...
- zabbix3.2利用自动发现功能对fastcgi模式的php状态进行集中监控
zabbix3.2利用自动发现功能对fastcgi模式的php状态进行集中监控 前端nginx虚拟主机引用后端多个php接口,为了方便监控,将后端服务器集中配置在nginx中,具体配置如下: [roo ...
- Django-视图层(view)
视图层(view) 视图函数,简称视图,本质上是一个简单的Python函数,它接受Web请求并且返回Web响应.响应的内容可以是HTML网页,重定向,404错误,图片等任何东西,但本质是返回响应对 ...
- form 组件
https://www.cnblogs.com/wupeiqi/articles/6144178.html class F2Form(forms.Form): title1=fields.CharFi ...
- python学习记录20190121
print 语句默认会给每一行添加一个换行符.只要在print 语句的最后添加一个逗号(,),就可以改变它这种行为 带逗号的print语句输出的元素之间会自动添加一个空格 print 没有任何参数的p ...
- (详细)华为P8 GRA-UL00的Usb调试模式在哪里开启的方法
经常我们使用Pc通过数据线连接上安卓手机的时候,如果手机没有开启usb开发者调试模式,Pc则没能够成功检测到我们的手机,有时候我们使用的一些功能较强的应用软件好比之前我们使用的一个应用软件引号精灵,老 ...
- jsp中一个标签两种方式绑定两个click事件导致未执行的问题
近日,在开发过程中,写了一个标签 <li id="a1" onclick="doSomething()">...</li> 在js页面中 ...