快速幂 ,快速幂优化,矩形快速幂(java)
快速幂形式
public static int f(int a,int b,int c){
int ans =1;
int base=a;
while(b!=0){
if((b&1)!=0)
ans=(ans*base)%c;
base=(base*base)%c;
}
return ans;
}
快速乘法幂(优化)
幂转换成乘法,乘法转化成加法
public static int f(int a,int b,int c){
int ans = 0;
int base=a;
while(b!=0){
if((b&1)!=0)
ans=(ans+base)%c;
base=(base+base)%c;
b>>=1;
}
return ans;
}
public static int f1(int a,int b,int c){
int ans =1;
int base = a;
while(b!=0){
if((b&1)!=0)
ans= f(ans, base, c);
base=f(base, base, c);
b>>=1;
}
return ans;
}
矩阵快速幂
将快速幂里边的1换成一个单位矩阵,然后利用矩阵相乘。
public static long[][] mut(int k,int n,long[][]A){
long [][]res = new long[n][n];
for(int i=0;i<res.length;i++)
res[i][i]=1;
while(k!=0){
if((k&1)!=0)
res=f(res,A);
A=f(A,A);
k>>=1;
}
return res;
}
public static long[][] f(long[][]A,long[][] B){
long res[][]=new long[A.length][B.length];
for(int i=0;i<res.length;i++)
for(int j=0;j<res[0].length;j++){
for(int k=0;k<B.length;k++){
res[i][j]+=A[i][k]*B[k][j];
}
}
return res;
}
例题:蓝桥杯 --加强的斐波那契
斐波那契数列大家都非常熟悉。它的定义是:
f(x) = 1 .... (x=1,2)
f(x) = f(x-1) + f(x-2) .... (x> 2)
对于给定的整数 n 和 m,我们希望求出:
f(1) + f(2) + ... + f(n) 的值。但这个值可能非常大,所以我们把它对 f(m) 取模。
import java.util.*; public class Main8 { //基本上是按模板写的 public static long[][] mut(int k,int n,long[][]A){
long [][]res = new long[n][n];
res[1][1]=1;
res[1][0]=0;
res[0][1]=0;
res[0][0]=1;
while(k!=0){
if((k&1)!=0)
res=f(res,A);
A=f(A,A);
k>>=1;
}
return res;
}
public static long[][] f(long[][]A,long[][] B){
long res[][]=new long[A.length][B.length];
for(int i=0;i<res.length;i++)
for(int j=0;j<res[0].length;j++){
for(int k=0;k<B.length;k++){
res[i][j]+=A[i][k]*B[k][j];
}
}
return res;
}
public static void main(String[] args) {
Scanner sc = new Scanner(System.in);
int n = sc.nextInt();
long a[][]=new long [2][2];
a[0][0]=1;
a[1][1]=0;
a[0][1]=1;
a[1][0]=1;
long d[][]=mut(n-1,2,a );
System.out.println(d[0][0]%1000000009); }
}
快速幂 ,快速幂优化,矩形快速幂(java)的更多相关文章
- 【板子】gcd、exgcd、乘法逆元、快速幂、快速乘、筛素数、快速求逆元、组合数
1.gcd int gcd(int a,int b){ return b?gcd(b,a%b):a; } 2.扩展gcd )extend great common divisor ll exgcd(l ...
- Luogu 3390 【模板】矩阵快速幂 (矩阵乘法,快速幂)
Luogu 3390 [模板]矩阵快速幂 (矩阵乘法,快速幂) Description 给定n*n的矩阵A,求A^k Input 第一行,n,k 第2至n+1行,每行n个数,第i+1行第j个数表示矩阵 ...
- 「干货」面试官问我如何快速搜索10万个矩形?——我说RBush
「干货」面试官问我如何快速搜索10万个矩形?--我说RBUSH 前言 亲爱的coder们,我又来了,一个喜欢图形的程序员,前几篇文章一直都在教大家怎么画地图.画折线图.画烟花,难道图形就是这样嘛,当 ...
- 微信快速开发框架(六)-- 微信快速开发框架(WXPP QuickFramework)V2.0版本上线--源码已更新至github
4月28日,已增加多媒体上传及下载API,对应MediaUploadRequest和MediaGetRequest ------------------------------------------ ...
- 怎么关闭win10快速访问功能?关闭Windows10系统快速访问方法
怎么关闭win10快速访问功能?关闭Windows10系统快速访问方法 Windows10系统的"快速访问"功能很容易泄露电脑中的隐私,用什么方法可以让这个功能消失,避免电脑的个人 ...
- ASP.NET Core模块化前后端分离快速开发框架介绍之2、快速创建一个业务模块
源码地址 GitHub:https://github.com/iamoldli/NetModular 演示地址 地址:https://nm.iamoldli.com 账户:admin 密码:admin ...
- Serverless 初体验:快速开发与部署一个Hello World(Java版)
昨天被阿里云的这个酷炫大屏吸引了! 我等85后开发者居然这么少!挺好奇到底什么鬼东西都是90.95后在玩?就深入看了一下. 这是一个关于Serverless的体验活动,Serverless在国内一直都 ...
- poj 3735 Training little cats 矩阵快速幂+稀疏矩阵乘法优化
题目链接 题意:有n个猫,开始的时候每个猫都没有坚果,进行k次操作,g x表示给第x个猫一个坚果,e x表示第x个猫吃掉所有坚果,s x y表示第x个猫和第y个猫交换所有坚果,将k次操作重复进行m轮, ...
- POJ 3735 Training little cats<矩阵快速幂/稀疏矩阵的优化>
Training little cats Time Limit: 2000MS Memory Limit: 65536K Total Submissions: 13488 Accepted: ...
随机推荐
- Python简单基础小程序
1 九九乘法表 for i in range(9):#从0循环到8 i += 1#等价于 i = i+1 for j in range(i):#从0循环到i j += 1 print(j,'*',i, ...
- 【转】一文掌握 Linux 性能分析之 CPU 篇
[转]一文掌握 Linux 性能分析之 CPU 篇 平常工作会涉及到一些 Linux 性能分析的问题,因此决定总结一下常用的一些性能分析手段,仅供参考. 说到性能分析,基本上就是 CPU.内存.磁盘 ...
- PyCharm 项目删除
Pycharm 删除项目具体操作如下: 1.选择菜单 File close project 2.选择要删除的项目右上角选择× 3.找到项目所在目录,删除相应文件夹 之后再次打开pycharm 发现 ...
- 题解 P3246 【[HNOI2016]序列】
很久之前做过这道题,但是跑得贼慢,现在用了可以被卡成 n m 的笛卡尔树做法,发现跑得贼快[雾 noteskey 介绍一种复杂度错误然鹅在随机数据下跑得贼快的算法: 笛卡尔树 方法就是 \(O~ n\ ...
- Java中的String、StringBuilder以及StringBuffer
https://www.cnblogs.com/dolphin0520/p/3778589.html
- memcache的基本操作
1.linux下启动memcache [root@localhost ~]# memcached -d -m 512 -u root -p 12266 -c 256 参数名称及意义: -d 以守护 ...
- 使用Open Live Write发布CSDN博客
---安装open live write 1.序 在CSDN上发布博客相当麻烦,图片一张张的上传确实让人头大,虽然通过office也能发布博客,不过Open Live Write软件使用感觉更好. 2 ...
- poj1456 Supermarket 贪心+并查集
题目链接:http://poj.org/problem?id=1456 题意:有n个物品(0 <= n <= 10000) ,每个物品有一个价格pi和一个保质期di (1 <= pi ...
- vue使用过滤器利用moment实现日期的格式化
import moment from 'moment' 定义局部 filters:{ dateString:function(value,format){ console.log(value,for ...
- leetcode python快乐数
编写一个算法来判断一个数是不是“快乐数” “快乐数”的定义为:对于一个正整数,每一次将该数替换为它每个位置上的数字的平方和,然后重复该过程直到为1,也可能是无限循环但始终变不到1. 如果可以变为1,那 ...