* 注: 本文/本系列谢绝转载,如有转载,本人有权利追究相应责任。

1.堆是什么?

(如图所示是一个小堆)

1)堆是一颗完全二叉树,它的最后一层不是满的,其他每一层都是满的,最后一层从左到右也没有空隙。

 简单的说?  完全二叉树也就是没有缝隙的二叉树

2)堆常常通过数组实现,因为 父子节点直接的关系直接可以通过数组的索引换算

  parent(i) = i/2

  left child(i) = 2*i + 1

  right child(i) = 2*i + 2

3)对于最大堆来说,每个节点的值都不大于其父节点的值,也就是根节点是最大的。

 对于最小堆来说,每个节点的值都不小于其父节点的值,也就是根节点是最小的

4)堆进行插入和删除的时间复杂度均为 O(LogN)

2.堆的应用

堆可以解决的首先就是topK问题,假设要从N大小的实数数组中找到topK,那么需要K*logN的时间。

当N=10000时

当N=10000*10000时

也就是说N可以放的足够大,K可以适当大一些,经过本机实验,堆在单机单线程下只需要14s就可以处理一亿数据的Top1W操作。

3.堆的实现

堆的操作主要是两个 add、remove,有些地方也会存在buildHeap的操作,我们分别捋一下它们的思路。

一下基于一个最大堆。

1) add操作,添加元素

思路:

将添加的元素放在数组尾部,进行“上浮”操作。也就是比较父元素,如果大于父元素则上浮。

实际长度 ++

        /**
* 插入过程需要上浮比较
* @param node
*/
public void insert(Node node){
if(actualSize == MAX_N){
System.out.println("当前堆已满!");
return;
} // 插入
// 插入节点
nodes[actualSize] = node; // 上浮过程
// 调整堆,从这个节点开始与其夫节点进行比较,如果大于父节点则交换上浮
for(int i = actualSize; i > 0 ;i = getParentIndex(i)){
Node current = nodes[i];
Node parent = nodes[getParentIndex(i)];
if(parent.data < current.data){
nodes[i] = parent;
nodes[getParentIndex(i)] = current;
}
}
actualSize ++;
}

2) remove操作,删除元素

思路:

获得堆顶的值,然后用堆底节点替换堆顶节点。并针对此节点进行"下沉"操作,所谓下沉,就是如果比较当前元素与左右子节点的值,如果比它们小,则与最大者交换。

实际长度 --

 /**
* 删除过程需要下沉比较
* @param node
*/
public void remove(Node node){
if(actualSize == 0){
System.out.println("当前堆已空!");
return;
} if(actualSize == 1){
actualSize --;
return;
} // 删除过程
// 使用最后一个节点替换掉顶点
Node tailNode = nodes[actualSize-1];
nodes[0] = tailNode;
actualSize --; // 下沉比较
for(int i = 0; i < actualSize;){
Node current = nodes[i]; Node leftChild = null;
if(getLeftChildIndex(i) < actualSize){
leftChild = nodes[getLeftChildIndex(i)];
}
Node rightChild = null;
if(getRightChildIndex(i) < actualSize){
rightChild = nodes[getRightChildIndex(i)];
} if(leftChild == null && rightChild == null){
return;
} if(leftChild != null && leftChild.data > current.data){
if(rightChild != null && rightChild.data > leftChild.data){ // 右枝最大
nodes[i] = rightChild;
nodes[getRightChildIndex(i)] = current;
// i走右枝
i = getRightChildIndex(i);
continue;
}else{ // 左枝最大
nodes[i] = leftChild;
nodes[getLeftChildIndex(i)] = current;
// i走左枝
i = getLeftChildIndex(i);
continue;
}
}else{
if(rightChild != null && rightChild.data > current.data){ // 右枝最大
nodes[i] = rightChild;
nodes[getRightChildIndex(i)] = current;
// i走右枝
i = getRightChildIndex(i);
continue;
}else if(rightChild != null && rightChild.data <= current.data){ // 当前点最大
//保持现状,直接结束循环
break;
}
}
}
}

3)buildHeap操作,给一个数组,进行建立堆操作

思路:

  遍历数组的每一个节点,针对每个节点进行"上浮"操作.

Code:

package ds6.heap;

import java.util.Arrays;

public class Heap {
static class Node{
long data; public Node(long data) {
this.data = data;
} @Override
public String toString() {
return "Node{" +
"data=" + data +
'}';
}
} /**
* TopN最大值堆
*/
static class TopNMaxHeap{
int MAX_N = 10; // Top N ,指定堆的最大大小
Node[] nodes;
int actualSize = 0; public TopNMaxHeap(int MAX_N) {
this.MAX_N = MAX_N;
nodes = new Node[MAX_N];
} public void foreachPrint(){
System.out.println(Arrays.toString(nodes));
} /**
* 删除过程需要下沉比较
* @param node
*/
public void remove(Node node){
if(actualSize == 0){
System.out.println("当前堆已空!");
return;
} if(actualSize == 1){
actualSize --;
return;
} // 删除过程
// 使用最后一个节点替换掉顶点
Node tailNode = nodes[actualSize-1];
nodes[0] = tailNode;
actualSize --; // 下沉比较
for(int i = 0; i < actualSize;){
Node current = nodes[i]; Node leftChild = null;
if(getLeftChildIndex(i) < actualSize){
leftChild = nodes[getLeftChildIndex(i)];
}
Node rightChild = null;
if(getRightChildIndex(i) < actualSize){
rightChild = nodes[getRightChildIndex(i)];
} if(leftChild == null && rightChild == null){
return;
} if(leftChild != null && leftChild.data > current.data){
if(rightChild != null && rightChild.data > leftChild.data){ // 右枝最大
nodes[i] = rightChild;
nodes[getRightChildIndex(i)] = current;
// i走右枝
i = getRightChildIndex(i);
continue;
}else{ // 左枝最大
nodes[i] = leftChild;
nodes[getLeftChildIndex(i)] = current;
// i走左枝
i = getLeftChildIndex(i);
continue;
}
}else{
if(rightChild != null && rightChild.data > current.data){ // 右枝最大
nodes[i] = rightChild;
nodes[getRightChildIndex(i)] = current;
// i走右枝
i = getRightChildIndex(i);
continue;
}else{ // 当前点最大
//保持现状,直接结束循环
break;
}
}
}
} /**
* 插入过程需要上浮比较
* @param node
*/
public void insert(Node node){
if(actualSize == MAX_N){
System.out.println("当前堆已满!");
return;
} // 插入
// 插入节点
nodes[actualSize] = node; // 上浮过程
// 调整堆,从这个节点开始与其夫节点进行比较,如果大于父节点则交换上浮
for(int i = actualSize; i > 0 ;i = getParentIndex(i)){
Node current = nodes[i];
Node parent = nodes[getParentIndex(i)];
if(parent.data < current.data){
nodes[i] = parent;
nodes[getParentIndex(i)] = current;
}
}
actualSize ++;
} public int getParentIndex(int x){
return (x-1)/2;
} public int getLeftChildIndex(int x){
return 2*x + 1;
} public int getRightChildIndex(int x){
return 2*x + 2;
}
} public static void main(String[] args) {
TopNMaxHeap topNMaxHeap = new TopNMaxHeap(10);
topNMaxHeap.insert(new Node(27));
topNMaxHeap.insert(new Node(33));
topNMaxHeap.insert(new Node(30));
topNMaxHeap.insert(new Node(31));
Node nodeToRemove = new Node(40);
topNMaxHeap.insert(nodeToRemove);
topNMaxHeap.insert(new Node(20));
topNMaxHeap.foreachPrint();
topNMaxHeap.remove(nodeToRemove);
topNMaxHeap.foreachPrint();
} }

result:

[Node{data=40}, Node{data=33}, Node{data=30}, Node{data=27}, Node{data=31}, Node{data=20}, null, null, null, null]
[Node{data=33}, Node{data=31}, Node{data=30}, Node{data=27}, Node{data=20}, Node{data=20}, null, null, null, null]

4.堆排序

因为堆的这个特性,通过不断poll出堆顶元素就可以对元素列表进行排序。

测试:

    public static void test2(){
int[] toSort = new int[]{
7,10,6,8,9,3,5,4
}; TopNMaxHeap heap = new TopNMaxHeap(toSort.length);
for(int i = 0 ; i < toSort.length; i++ ){
heap.insert(new Node(toSort[i]));
} int[] result = new int[toSort.length];
for(int i = 0; i < toSort.length; i++ ){
result[i]=(int)heap.nodes[0].data;
heap.remove(heap.nodes[0]);
} System.out.println(Arrays.toString(result)); }

result:

[10, 9, 8, 7, 6, 5, 4, 3]

[数据结构] 2.7 Heap 堆的更多相关文章

  1. Stack栈 Heap堆

    Stack(栈) 栈(stack) 又名堆栈,它是一种运算受限的线性表.其限制是仅允许在表的一端进行插入和删除运算.这一端被称为栈顶,相对地,把另一端称为栈底.向一个栈插入新元素又称作进栈.入栈或压栈 ...

  2. 栈 堆 stack heap 堆内存 栈内存 内存分配中的堆和栈 掌握堆内存的权柄就是返回的指针 栈是面向线程的而堆是面向进程的。 new/delete and malloc/ free 指针与内存模型

    小结: 1.栈内存 为什么快? Due to this nature, the process of storing and retrieving data from the stack is ver ...

  3. Heap堆的理解以及在IAR中如何设置堆的大小

    文章首发于浩瀚先森博客 堆栈的概念在脑海里已经存在有一段时间了,今天就测试来整理下Heap堆.栈以后再说. 堆区不像全局变量和局部变量总是有指定的内存大小,它是为了在程序运行时动态分配内存而设定的一块 ...

  4. java - Stack栈和Heap堆的区别

    首先分清楚Stack,Heap的中文翻译:Stack—栈,Heap—堆.         在中文里,Stack可以翻译为“堆栈”,所以我直接查找了计算机术语里面堆和栈开头的词语:        堆存储 ...

  5. Heap(堆)和stack(栈)有的区别是什么。

    java的内存分为两类,一类是栈内存,一类是堆内存.栈内存是指程序进入一个方法时,会为这个方法单独分配一块私属存储空间,用于存储这个方法内部的局部变量,当这个方法结束时,分配给这个方法的栈会释放,这个 ...

  6. JAVA Stack栈和Heap堆的区别(转)

          首先分清楚Stack,Heap的中文翻译:Stack—栈,Heap—堆.         在中文里,Stack可以翻译为“堆栈”,所以我直接查找了计算机术语里面堆和栈开头的词语:      ...

  7. 逻辑运算符、三元运算符、for循环、stack(栈),heap(堆),方法区,静态域

    Lesson One 2018-04-17 19:58:39 逻辑运算符(用于逻辑运算,左右两边都是 true 或 false) 逻辑与-& 和 短路与-&& 区别: & ...

  8. linux heap堆分配

    heap堆分配在用户层面:malloc函数用于heap内存分配 void* malloc(size_t size); 进程的虚拟内存地址布局: 对用户来说,主要关注的空间是User Space.将Us ...

  9. 如何给女朋友讲明白:Java 中 Stack(栈) 与 Heap(堆)

    背景 Java 中 Stack(栈) 与 Heap(堆) 是面试中被经常问到的一个话题. 有没有对 Java 中 Stack(栈) 与 Heap(堆) 烂熟于心的童鞋,请举手!!!(怎么没人举手-) ...

随机推荐

  1. hibernate框架的简单入门

    1.什么是框架 框架是一个半成品,框架帮我们实现了一部分的功能. 2.使用框架的最大好处 使用框架的最大好处就是,少写一部分代码但仍能实现我们所需要实现的功能. 3.什么是hiberbnate框架 ( ...

  2. PYTHON装饰器用法及演变

    '''开放封闭原则: 软件一旦上线之后就应该满足开放封闭原则 具体就是指对修改是封闭的,对扩展是开放的装饰器:什么是装饰器:装饰就是修饰,器指的是工具装饰器本省可以是任意可调用的对象被装饰的对象也可以 ...

  3. DLG消息

    WM_GETMINMAXINFO 0X0024 WM_NCCREATE 0X0081 WM_NCCALCSIZE 0X0083   WM_CREATE 0X0001 WM_SIZE 0X0005 WM ...

  4. 2018-2019-2 20165335『网络对抗技术』Exp5:MSF基础应用

    主动攻击的实践: ms17_010(成功) 浏览器攻击的实践:ms14_064(成功) 客户端攻击的实践:adobe reader PDF的攻击(成功) 运用辅助模块的实践:VNC弱口令破解/绕过(失 ...

  5. Elastic-Job 配置介绍

    作业配置 与Spring容器配合使用作业,可以将作业Bean配置为Spring Bean,可在作业中通过依赖注入使用Spring容器管理的数据源等对象.可用placeholder占位符从属性文件中取值 ...

  6. LINUX 编程定位工具gstack,pstack

    pstack: pstack命令可显示每个进程的栈跟踪. pstack 命令必须由相应进程的属主或 root 运行. 可以使用 pstack 来确定进程挂起的位置. 此命令允许使用的唯一选项是要检查的 ...

  7. 在sparkStreaming实时存储时的问题

    1.实时插入mysql时遇到的问题,使用的updateStaeBykey有状态的算子 必须设置checkpoint  如果报错直接删掉checkpoint 在创建的时候自己保存偏移量即可 再次启动时读 ...

  8. Path Analyzer Pro出现raw socket问题

    使用windows7,8以及10平台运行一个traceroute liketools软件,名为Path Analyzer Pro 2.7,遇到raw socket问题,如图: 原因是raw socke ...

  9. Oracle的问题的解决

    关于数据库的数据的导入导出       1.建数据库 修改密码的有效天数为无限期.       2.建表空间       3.建用户 导数据之前要建用户 要登进去试试 如themis_yw themi ...

  10. 2019/4/17 wen 注解、垃圾回收、多线程