opencv学习之路(40)、人脸识别算法——EigenFace、FisherFace、LBPH
一、人脸识别算法之特征脸方法(Eigenface)
1、原理介绍及数据收集
特征脸方法主要是基于PCA降维实现。
详细介绍和主要思想可以参考
http://blog.csdn.net/u010006643/article/details/46417127
上述博客的人脸数据库打不开了,大家可以去下面这个博客下载ORL人脸数据库
http://blog.csdn.net/xdzzju/article/details/50445160
下载后,ORL人脸数据库有40个人,每人10张照片。

2、流程


3、相关图示

4、代码
#include <opencv2/opencv.hpp>
#include <opencv2/face.hpp> using namespace cv;
using namespace cv::face;
using namespace std; //对原图归一化
Mat normal(Mat src, Mat dst) {
if (src.channels() == )//若原图单通道
normalize(src, dst, , , NORM_MINMAX, CV_8UC1);
else //否则,原图三通道
normalize(src, dst, , , NORM_MINMAX, CV_8UC3);
return dst;
} void main() {
//读取文件,转换为数据流
string filename = string("at.txt");
ifstream file(filename.c_str(), ifstream::in);
if (!file)
cout << "error" << endl; string line, path, classlabel;
vector<Mat>image;
vector<int>labels;
char separator = ';';
while (getline(file,line))
{
stringstream liness(line);
getline(liness, path, separator);
getline(liness, classlabel);
if (!path.empty()&&!classlabel.empty())
{
//cout << "path:" << path<< endl;
image.push_back(imread(path, ));
labels.push_back(atoi(classlabel.c_str()));
}
} if (image.size() < || labels.size() < )
cout << "invalid image path..." << endl; int height = image[].rows;
int width = image[].cols;
//cout << "height:" << height << ",width:" << width<<endl; //最后一个人为测试样本
Mat testSample = image[image.size() - ];
int testLabel = labels[labels.size() - ];
image.pop_back();
labels.pop_back(); //训练
Ptr<BasicFaceRecognizer>model = createEigenFaceRecognizer();
model->train(image, labels); //识别
int predictLabel = model->predict(testSample);
cout << "actual label:" << testLabel << ",predict label:" << predictLabel << endl; //获得特征值,特征向量,均值 平均脸
Mat eigenvalues = model->getEigenValues();
Mat eigenvectors = model->getEigenVectors();
Mat mean = model->getMean();
Mat meanFace = mean.reshape(,height);
Mat dst;
dst= normal(meanFace,dst);
imshow("Mean Face", dst); //特征脸
for (int i = ; i < min(,eigenvectors.cols); i++)
{
Mat ev = eigenvectors.col(i).clone();
Mat eigenFace = ev.reshape(, height);
Mat grayscale;
grayscale = normal(eigenFace, grayscale);
Mat colorface;
applyColorMap(grayscale, colorface, COLORMAP_BONE);
char* winTitle = new char[];
sprintf(winTitle, "eigenface_%d", i);
imshow(winTitle, colorface);
} //重建人脸
for (int num = min(, eigenvectors.cols); num < min(, eigenvectors.cols); num+=)
{
Mat evs = Mat(eigenvectors, Range::all(), Range(, num));
Mat projection = LDA::subspaceProject(evs, mean, image[].reshape(, ));
Mat reconstruction= LDA::subspaceReconstruct(evs, mean, projection); Mat result = reconstruction.reshape(, height);
reconstruction = normal(result, reconstruction);
char* winTitle = new char[];
sprintf(winTitle, "recon_face_%d", num);
imshow(winTitle, reconstruction);
} waitKey();
}

二、FisherFace(LDA线性判别分析)
1、理论介绍
http://blog.csdn.net/feirose/article/details/39552997

2、流程

3、PCA和LDA的对比

4、代码(与特征脸代码几乎一致)
此处只列出修改部分
55行模型训练 Ptr<BasicFaceRecognizer>model = createFisherFaceRecognizer(); 72行显示特征脸 for (int i = 0; i < min(16,eigenvectors.cols); i++)
Mat ev = eigenvectors.col(i).clone(); 86行重建人脸 for (int num = 0; num < min(16, eigenvectors.cols); num++)
三、LBPH
1、原理介绍
大家可以参考http://blog.csdn.net/xiaomaishiwoa/article/details/46640377

二、流程

3、代码
#include <opencv2/opencv.hpp>
#include <opencv2/face.hpp> using namespace cv;
using namespace cv::face;
using namespace std; //对原图归一化
Mat normal(Mat src, Mat dst) {
if (src.channels() == )//若原图单通道
normalize(src, dst, , , NORM_MINMAX, CV_8UC1);
else //否则,原图三通道
normalize(src, dst, , , NORM_MINMAX, CV_8UC3);
return dst;
} void main() {
//读取文件,转换为数据流
string filename = string("at.txt");
ifstream file(filename.c_str(), ifstream::in);
if (!file)
cout << "error" << endl; string line, path, classlabel;
vector<Mat>image;
vector<int>labels;
char separator = ';';
while (getline(file,line))
{
stringstream liness(line);
getline(liness, path, separator);
getline(liness, classlabel);
if (!path.empty()&&!classlabel.empty())
{
//cout << "path:" << path<< endl;
image.push_back(imread(path, ));
labels.push_back(atoi(classlabel.c_str()));
}
} if (image.size() < || labels.size() < )
cout << "invalid image path..." << endl; int height = image[].rows;
int width = image[].cols;
//cout << "height:" << height << ",width:" << width<<endl; //最后一个人为测试样本
Mat testSample = image[image.size() - ];
int testLabel = labels[labels.size() - ];
image.pop_back();
labels.pop_back(); //训练
Ptr<LBPHFaceRecognizer>model = createLBPHFaceRecognizer();
model->train(image, labels); //识别
int predictLabel = model->predict(testSample);
cout << "actual label:" << testLabel << ",predict label:" << predictLabel << endl; //打印参数
int radius = model->getRadius(); //中心像素点到周围像素点的距离
int neibs = model->getNeighbors(); //周围像素点的个数
int grad_x = model->getGridX(); //将一张图片在x方向分成几块
int grad_y = model->getGridY(); //将一张图片在y方向分成几块
double t = model->getThreshold(); //相似度阈值
cout << "radius:" << radius << endl;
cout << "neibs:" << neibs << endl;
cout << "grad_x:" << grad_x << endl;
cout << "grad_y:" << grad_y << endl;
cout << "threshold:" << t<<endl; waitKey();
}

opencv学习之路(40)、人脸识别算法——EigenFace、FisherFace、LBPH的更多相关文章
- DeepID人脸识别算法之三代(转)
DeepID人脸识别算法之三代 转载请注明:http://blog.csdn.net/stdcoutzyx/article/details/42091205 DeepID,目前最强人脸识别算法,已经三 ...
- DeepID人脸识别算法之三代
DeepID人脸识别算法之三代 转载请注明:http://blog.csdn.net/stdcoutzyx/article/details/42091205 DeepID,眼下最强人脸识别算法.已经三 ...
- 用opencv做的静态图片人脸识别
这次给大家分享一个图像识别方面的小项目,主要功能是识别图像中的人脸并根据人脸在图片库找出同一个与它最相似的图片,也就是辨别不同的人. 环境:VS2013+opencv2.4.13 主要是算法:open ...
- OpenCV学习笔记(27)KAZE 算法原理与源码分析(一)非线性扩散滤波
http://blog.csdn.net/chenyusiyuan/article/details/8710462 OpenCV学习笔记(27)KAZE 算法原理与源码分析(一)非线性扩散滤波 201 ...
- 总结几个简单好用的Python人脸识别算法
原文连接:https://mp.weixin.qq.com/s/3BgDld9hILPLCIlyysZs6Q 哈喽,大家好. 今天给大家总结几个简单.好用的人脸识别算法. 人脸识别是计算机视觉中比较常 ...
- 基于MATLAB的人脸识别算法的研究
基于MATLAB的人脸识别算法的研究 作者:lee神 现如今机器视觉越来越盛行,从智能交通系统的车辆识别,车牌识别到交通标牌的识别:从智能手机的人脸识别的性别识别:如今无人驾驶汽车更是应用了大量的机器 ...
- Eigenface与PCA人脸识别算法实验
简单的特征脸识别实验 实现特征脸的过程其实就是主成分分析(Principal Component Analysis,PCA)的一个过程.关于PCA的原理问题,它是一种数学降维的方法.是为了简化问题.在 ...
- Visual C++ 经典的人脸识别算法源代码
说明:VC++ 经典的人脸识别算法实例,提供人脸五官定位具体算法及两种实现流程. 点击下载
- opencv学习之路(41)、人脸识别
一.人脸检测并采集个人图像 //take_photo.cpp #include<opencv2/opencv.hpp> using namespace cv; using namespac ...
随机推荐
- ldd可执行程序时返回not a dynamic executable
原因:32位程序放在64位机器上或64位程序放在32位程序上了 解决方法:如果是32位程序放在64位系统上则安装yum -y install libstdc++.i686,64位则是yum -y in ...
- App Store评论优化,让你的APP评论上涨
App Store评论优化怎么做 App Store评论优化,让你的APP评论上涨 关于「ASO评论优化」,主要分为三块.换评论,买评论,引导用户写评论. 可能有些刚接触ASO的朋友会问,为什么要给A ...
- xmind使用
按住alt可以使子主题线条拉长:
- 关于php得到参数数据
通过GET得到参数数据 $_SERVER['QUERY_STRING'] 获取?后面的值 $_SERVER['SCRIPT_NAME'] 获取当前脚本的路径 具体参数通过_GET['参数']获得 fi ...
- js 自动类型转换
js自动类型转换 1.==符号在判断左右两边数据是否相等时,如果数据类型一致,直接比较值即可 2.==符号左右数据类型不一致时,如果两方数据为布尔型.数值型.字符串型时,不为数字的那一方自动调用Num ...
- Map集合转成json数据
maven项目需要导入一下依赖: <dependency> <groupId>net.sf.json-lib</groupId> <artifactId> ...
- HFSS中查看增益
第一步:设置查看增益条件 radiation 中设置 第二步设置扫描方式 下面的save fields 一定要勾选 第三步:扫描完成就可以查看了 results 中 查看 其中 phi ...
- Mac OS 安装robotframework
1,查看当前系统默认的Python路径 which python1==> /usr/bin/python 2,查看当前python 版本 python1==> Python 2.7.10 ...
- python发送邮件心得体会
利用本地smtp server发送 windows下尝试装了两个smtp server大概配置了下,发现没法生效,也没时间仔细研究了.装上foxmail发现以前可以本地发送的选项已经无法找到. 不带附 ...
- nvidia-smi 实时查看
需要用到 watch 命令: watch -n nvidia-smi


