一、人脸识别算法之特征脸方法(Eigenface)

1、原理介绍及数据收集

特征脸方法主要是基于PCA降维实现。

详细介绍和主要思想可以参考

http://blog.csdn.net/u010006643/article/details/46417127

上述博客的人脸数据库打不开了,大家可以去下面这个博客下载ORL人脸数据库

http://blog.csdn.net/xdzzju/article/details/50445160

下载后,ORL人脸数据库有40个人,每人10张照片。

2、流程

3、相关图示

4、代码

 #include <opencv2/opencv.hpp>
#include <opencv2/face.hpp> using namespace cv;
using namespace cv::face;
using namespace std; //对原图归一化
Mat normal(Mat src, Mat dst) {
if (src.channels() == )//若原图单通道
normalize(src, dst, , , NORM_MINMAX, CV_8UC1);
else //否则,原图三通道
normalize(src, dst, , , NORM_MINMAX, CV_8UC3);
return dst;
} void main() {
//读取文件,转换为数据流
string filename = string("at.txt");
ifstream file(filename.c_str(), ifstream::in);
if (!file)
cout << "error" << endl; string line, path, classlabel;
vector<Mat>image;
vector<int>labels;
char separator = ';';
while (getline(file,line))
{
stringstream liness(line);
getline(liness, path, separator);
getline(liness, classlabel);
if (!path.empty()&&!classlabel.empty())
{
//cout << "path:" << path<< endl;
image.push_back(imread(path, ));
labels.push_back(atoi(classlabel.c_str()));
}
} if (image.size() < || labels.size() < )
cout << "invalid image path..." << endl; int height = image[].rows;
int width = image[].cols;
//cout << "height:" << height << ",width:" << width<<endl; //最后一个人为测试样本
Mat testSample = image[image.size() - ];
int testLabel = labels[labels.size() - ];
image.pop_back();
labels.pop_back(); //训练
Ptr<BasicFaceRecognizer>model = createEigenFaceRecognizer();
model->train(image, labels); //识别
int predictLabel = model->predict(testSample);
cout << "actual label:" << testLabel << ",predict label:" << predictLabel << endl; //获得特征值,特征向量,均值 平均脸
Mat eigenvalues = model->getEigenValues();
Mat eigenvectors = model->getEigenVectors();
Mat mean = model->getMean();
Mat meanFace = mean.reshape(,height);
Mat dst;
dst= normal(meanFace,dst);
imshow("Mean Face", dst); //特征脸
for (int i = ; i < min(,eigenvectors.cols); i++)
{
Mat ev = eigenvectors.col(i).clone();
Mat eigenFace = ev.reshape(, height);
Mat grayscale;
grayscale = normal(eigenFace, grayscale);
Mat colorface;
applyColorMap(grayscale, colorface, COLORMAP_BONE);
char* winTitle = new char[];
sprintf(winTitle, "eigenface_%d", i);
imshow(winTitle, colorface);
} //重建人脸
for (int num = min(, eigenvectors.cols); num < min(, eigenvectors.cols); num+=)
{
Mat evs = Mat(eigenvectors, Range::all(), Range(, num));
Mat projection = LDA::subspaceProject(evs, mean, image[].reshape(, ));
Mat reconstruction= LDA::subspaceReconstruct(evs, mean, projection); Mat result = reconstruction.reshape(, height);
reconstruction = normal(result, reconstruction);
char* winTitle = new char[];
sprintf(winTitle, "recon_face_%d", num);
imshow(winTitle, reconstruction);
} waitKey();
}

二、FisherFace(LDA线性判别分析)

1、理论介绍

http://blog.csdn.net/feirose/article/details/39552997

2、流程

3、PCA和LDA的对比

4、代码(与特征脸代码几乎一致)

此处只列出修改部分

55行模型训练    Ptr<BasicFaceRecognizer>model = createFisherFaceRecognizer();

72行显示特征脸  for (int i = 0; i < min(16,eigenvectors.cols); i++)
Mat ev = eigenvectors.col(i).clone(); 86行重建人脸 for (int num = 0; num < min(16, eigenvectors.cols); num++)

三、LBPH

1、原理介绍

大家可以参考http://blog.csdn.net/xiaomaishiwoa/article/details/46640377

二、流程

3、代码

#include <opencv2/opencv.hpp>
#include <opencv2/face.hpp> using namespace cv;
using namespace cv::face;
using namespace std; //对原图归一化
Mat normal(Mat src, Mat dst) {
if (src.channels() == )//若原图单通道
normalize(src, dst, , , NORM_MINMAX, CV_8UC1);
else //否则,原图三通道
normalize(src, dst, , , NORM_MINMAX, CV_8UC3);
return dst;
} void main() {
//读取文件,转换为数据流
string filename = string("at.txt");
ifstream file(filename.c_str(), ifstream::in);
if (!file)
cout << "error" << endl; string line, path, classlabel;
vector<Mat>image;
vector<int>labels;
char separator = ';';
while (getline(file,line))
{
stringstream liness(line);
getline(liness, path, separator);
getline(liness, classlabel);
if (!path.empty()&&!classlabel.empty())
{
//cout << "path:" << path<< endl;
image.push_back(imread(path, ));
labels.push_back(atoi(classlabel.c_str()));
}
} if (image.size() < || labels.size() < )
cout << "invalid image path..." << endl; int height = image[].rows;
int width = image[].cols;
//cout << "height:" << height << ",width:" << width<<endl; //最后一个人为测试样本
Mat testSample = image[image.size() - ];
int testLabel = labels[labels.size() - ];
image.pop_back();
labels.pop_back(); //训练
Ptr<LBPHFaceRecognizer>model = createLBPHFaceRecognizer();
model->train(image, labels); //识别
int predictLabel = model->predict(testSample);
cout << "actual label:" << testLabel << ",predict label:" << predictLabel << endl; //打印参数
int radius = model->getRadius(); //中心像素点到周围像素点的距离
int neibs = model->getNeighbors(); //周围像素点的个数
int grad_x = model->getGridX(); //将一张图片在x方向分成几块
int grad_y = model->getGridY(); //将一张图片在y方向分成几块
double t = model->getThreshold(); //相似度阈值
cout << "radius:" << radius << endl;
cout << "neibs:" << neibs << endl;
cout << "grad_x:" << grad_x << endl;
cout << "grad_y:" << grad_y << endl;
cout << "threshold:" << t<<endl; waitKey();
}

opencv学习之路(40)、人脸识别算法——EigenFace、FisherFace、LBPH的更多相关文章

  1. DeepID人脸识别算法之三代(转)

    DeepID人脸识别算法之三代 转载请注明:http://blog.csdn.net/stdcoutzyx/article/details/42091205 DeepID,目前最强人脸识别算法,已经三 ...

  2. DeepID人脸识别算法之三代

    DeepID人脸识别算法之三代 转载请注明:http://blog.csdn.net/stdcoutzyx/article/details/42091205 DeepID,眼下最强人脸识别算法.已经三 ...

  3. 用opencv做的静态图片人脸识别

    这次给大家分享一个图像识别方面的小项目,主要功能是识别图像中的人脸并根据人脸在图片库找出同一个与它最相似的图片,也就是辨别不同的人. 环境:VS2013+opencv2.4.13 主要是算法:open ...

  4. OpenCV学习笔记(27)KAZE 算法原理与源码分析(一)非线性扩散滤波

    http://blog.csdn.net/chenyusiyuan/article/details/8710462 OpenCV学习笔记(27)KAZE 算法原理与源码分析(一)非线性扩散滤波 201 ...

  5. 总结几个简单好用的Python人脸识别算法

    原文连接:https://mp.weixin.qq.com/s/3BgDld9hILPLCIlyysZs6Q 哈喽,大家好. 今天给大家总结几个简单.好用的人脸识别算法. 人脸识别是计算机视觉中比较常 ...

  6. 基于MATLAB的人脸识别算法的研究

    基于MATLAB的人脸识别算法的研究 作者:lee神 现如今机器视觉越来越盛行,从智能交通系统的车辆识别,车牌识别到交通标牌的识别:从智能手机的人脸识别的性别识别:如今无人驾驶汽车更是应用了大量的机器 ...

  7. Eigenface与PCA人脸识别算法实验

    简单的特征脸识别实验 实现特征脸的过程其实就是主成分分析(Principal Component Analysis,PCA)的一个过程.关于PCA的原理问题,它是一种数学降维的方法.是为了简化问题.在 ...

  8. Visual C++ 经典的人脸识别算法源代码

    说明:VC++ 经典的人脸识别算法实例,提供人脸五官定位具体算法及两种实现流程. 点击下载

  9. opencv学习之路(41)、人脸识别

    一.人脸检测并采集个人图像 //take_photo.cpp #include<opencv2/opencv.hpp> using namespace cv; using namespac ...

随机推荐

  1. vue 引入字体库

    1.先下载字体文件所需的.ttf文件 2.将字体文件引入 自己定义一个文件夹,放入下载好的.ttf文件 先自己定义一个font.css文件,将下载好的字体文件的路径引入 @font-face { fo ...

  2. 如何用anysend发wirshark的报文

    可以复制 抓包的的报文的 hex txt文档  粘贴到 anysend 继续发送

  3. 聊天机器人開發好消息!!DIALOGFLOW與微信的天作之合!!

    虽然DIALOGFLOW暂未能够与微信(WECHAT)或企业微信(ENTERPRISE WECHAT)进行任何技制上的连接INTERGRATION),确实限制了我们这些聊天机器人开发者的创作空间,因为 ...

  4. MongoDB - Indexes

    #explain command pp db[:zips].find(:state => 'MD').explain #List all indexes: db[:zips].indexes.e ...

  5. 搭建Sonar代码走查环境

    1.下载SonarQube并解压(查看检测结果用) 2.根据自己系统下载SonarQube Runner(检测代码用,旧版名叫Sonar Scanner) 3.在自己要检测的工程目录下建立sonar- ...

  6. Python3学习之路~7.1 静态方法、类方法、属性方法

    静态方法 通过@staticmethod装饰器即可把其装饰的方法变为一个静态方法,什么是静态方法呢?其实不难理解,普通的方法,可以在实例化后直接调用,并且在方法里可以通过self.调用实例变量或类变量 ...

  7. condition版生产者与消费者模式

    1.简介 在爬虫中,生产者与消费者模式是经常用到的.我能想到的比较好的办法是使用redis或者mongodb数据库构造生产者消费者模型.如果直接起线程进行构造生产者消费者模型,线程容易假死,也难以构造 ...

  8. 迁移svn项目到git

    women用的gitlab 在gitlab新建项目,然后拉项目拉下来,然后你把项目(vue)全部选中,除开node_modeles  .svn  dist  .idea这些不选外,copy到这个拉下来 ...

  9. libpng warning: iCCP: known incorrect sRGB profile

    参考  http://www.cocos2d-x.org/forums/6/topics/49093 解决 I got the following warnings in console when r ...

  10. XML CDATA识别“<,>”

    http://www.w3school.com.cn/xml/xml_cdata.asp 术语 CDATA 指的是不应由 XML 解析器进行解析的文本数据(Unparsed Character Dat ...