题解-Codeforces917D Stranger Trees
Problem
题意概要:一棵 \(n\) 个节点的无向树。问在 \(n\) 个点的完全图中,有多少生成树与原树恰有 \(k\) 条边相同,对于任意 \(k\in[0,n)\) 输出答案,答案取模。
\(2\leq n\leq 100\)
Solution
这题思路新奇啊,智商又能上线了
由于暴力为枚举所有生成树,发现枚举所有生成树的高效算法为矩阵树定理,而且数据范围恰好在矩阵树复杂度接受范围内
由于矩阵树计算的是所有 生成树边权积 之和,考虑给完全图中每一条边边权设为 \(1\),若是树边则设为 \(x\),最后矩阵树消出来的行列式为一个多项式,这个多项式中 \(k\) 次项的系数即 与原树重合恰好 \(k\) 条边的生成树个数
考虑将多项式代入行列式去消不方便,可以采用代入几个数字去算,最后用拉格朗日插值去算系数,由于最后的多项式为 \(n\) 项系数,所以需要用 \(n+1\) 个值去代,不妨设为 \(1...n+1\)
总体时间复杂度 \(O(n^4)\),比容斥Dp慢多了……
拉格朗日差值
刚好正在复习拉格朗日差值,附上大致流程:
求 \(F(x)=\sum a_ix^i\),使得 \(\forall i\in[1,n],F(x_i)=y_i\)
令 \(F(x)=\sum_if_i(x)\),其中\(f_i(x_j)=\begin{cases}y_j,& j=i\\0,& j\not =i\end{cases}\)
由定义可设 \(f_i(x)=c_i\prod_{j\not = i}(x-x_j)=y_i\),可以解出 \(c_i\),反过来得到 \(f_i(x)\),最后求和得到 \(F(x)\)
其中求 \(\prod_{j\not = i}(x-x_j)\) 时,可以先预处理出 \(\prod (x-x_j)\),对于每一个 \(i\) 都将上式除以 \((x-x_i)\),这样二项式乘除法都是 \(O(n^2)\) 的
整个算法复杂度 \(O(n^2)\)
Code
//Codeforces-917D
#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
inline void read(int&x){
char c11=getchar();x=0;while(!isdigit(c11))c11=getchar();
while(isdigit(c11))x=x*10+c11-'0',c11=getchar();
}
const int N = 113, p = 1e9+7;
struct Edge{int l,r;}e[N];
int Y[N],n;
inline int qpow(int A,int B){
int res = 1; while(B){
if(B&1) res = (ll)res * A%p;
A = (ll)A * A%p, B >>= 1;
}return res;
}
namespace Matrix_Tree{
int a[N][N];
int Gauss(){
for(int i=1;i<n;++i){
if(!a[i][i])
for(int j=i+1;j<n;++j)
if(a[j][i]){
for(int k=i;k<n;++k)
swap(a[i][k],a[j][k]);
break;
}
for(int j=i+1;j<n;++j)
if(a[j][i]){
int ki = (ll)a[j][i] * qpow(a[i][i],p-2)%p;
for(int k=i;k<n;++k)
a[j][k] = (a[j][k] - (ll)ki * a[i][k]%p +p)%p;
}
}
int res = 1;
for(int i=1;i<n;++i)
res = (ll)res * a[i][i]%p;
return res;
}
int calc(int x){
for(int i=1;i<n;++i)
for(int j=1;j<n;++j)
a[i][j] = 0;
for(int i=1;i<n;++i)
a[i][i] = n - 1;
for(int i=1,l,r;i<n;++i){
l = e[i].l, r = e[i].r;
a[l][r] = a[r][l] = p - x;
a[l][l] = (a[l][l] + x - 1)%p;
a[r][r] = (a[r][r] + x - 1)%p;
}
for(int i=1;i<n;++i)
for(int j=1;j<n;++j)
if(i!=j and !a[i][j])
a[i][j] = p - 1;
return Gauss();
}
}
namespace Lagrange{
int Ans[N],S[N],a[N],tmp[N];
inline int calc(int n,int x){
int res = 0, pw = 1;
for(int i=0;i<=n;++i){
res = (res + (ll)pw * a[i])%p;
pw = (ll)pw * x %p;
}return res;
}
void work(){
++n, S[0] = 1;
for(int i=1;i<=n;++i){
for(int j=i;j;--j)
S[j] = S[j-1];
S[0] = 0;
for(int j=0;j<i;++j)
S[j] = (S[j] - (ll)S[j+1] * i%p +p)%p;
}
for(int i=1;i<=n;++i){
for(int j=0;j<=n;++j) tmp[j] = S[j];
for(int j=n;j;--j){
a[j-1] = tmp[j];
tmp[j-1] = (tmp[j-1] + (ll)i * tmp[j])%p;
}
int v = calc(n-1,i);
v = (ll)qpow(v,p-2) * Y[i]%p;
for(int j=0;j<n;++j)
Ans[j] = (Ans[j] + (ll)v * a[j])%p;
}
for(int i=0;i<n-1;++i)
printf("%d ",Ans[i]);
putchar(10);
}
}
int main(){
read(n);
for(int i=1,x,y;i<n;++i) read(e[i].l),read(e[i].r);
for(int i=1;i<=n+1;++i) Y[i] = Matrix_Tree::calc(i);
Lagrange::work();
return 0;
}
题解-Codeforces917D Stranger Trees的更多相关文章
- Codeforces917D. Stranger Trees
$n \leq 100$的完全图,对每个$0 \leq K \leq n-1$问生成树中与给定的一棵树有$K$条公共边的有多少个,答案$mod \ \ 1e9+7$. 对这种“在整体中求具有某些特性的 ...
- 【CF917D】Stranger Trees 树形DP+Prufer序列
[CF917D]Stranger Trees 题意:给你一棵n个点的树,对于k=1...n,问你有多少有标号的n个点的树,与给出的树有恰好k条边相同? $n\le 100$ 题解:我们先考虑容斥,求出 ...
- CF917D Stranger Trees
CF917D Stranger Trees 题目描述 给定一个树,对于每个\(k=0,1\cdots n-1\),问有多少个生成树与给定树有\(k\)条边重合. 矩阵树定理+高斯消元 我们答案为\(f ...
- 题解 CF917D 【Stranger Trees】
生成树计数问题用矩阵树定理来考虑. 矩阵树定理求得的为\(\sum\limits_T\prod\limits_{e\in T}v_e\),也就是所有生成树的边权积的和. 这题边是不带权的,应用矩阵树定 ...
- codeforces 917D Stranger Trees
题目链接 正解:矩阵树定理+拉格朗日插值. 一下午就搞了这一道题,看鬼畜英文题解看了好久.. 首先这题出题人给了两种做法,感觉容斥+$prufer$序列+$dp$的做法细节有点多所以没看,然而这个做法 ...
- 【CF917D】Stranger Trees
题目 看题解的时候才突然发现\(zky\)讲过这道题啊,我现在怕不是一个老年人了 众所周知矩阵树求得是这个 \[\sum_{T}\prod_{e\in T}w_e\] 而我们现在的这个问题有些鬼畜了, ...
- CF917D. Stranger Trees & TopCoder13369. TreeDistance(变元矩阵树定理+高斯消元)
题目链接 CF917D:https://codeforces.com/problemset/problem/917/D TopCoder13369:https://community.topcoder ...
- Codeforces 917D - Stranger Trees(矩阵树定理/推式子+组合意义)
Codeforces 题目传送门 & 洛谷题目传送门 刚好看到 wjz 在做这题,心想这题之前好像省选前做过,当时觉得是道挺不错的题,为啥没写题解呢?于是就过来补了,由此可见我真是个大鸽子(( ...
- LeetCode题解之Leaf-Similar Trees
1.题目描述 2.问题分析 将叶子节点的值放入vector,然后比较. 3.代码 bool leafSimilar(TreeNode* root1, TreeNode* root2) { vector ...
随机推荐
- 前序遍历构造已知二叉树(Java)
public BiNode createBiTree() { Scanner input = new Scanner(System.in); int k = input.nextInt(); if(k ...
- Linux如何在一个文件中写入内容
Linux中,在一个文件中写入内容,可以vim打开编辑模式,输入我们想要的内容,此次我们使用echo命令 来在一个文件夹中写入内容. echo命令: 第一种: echo 'i love u' > ...
- Ajax设置自定义请求头的两种方法
用自定义请求头token为例 方法一 $.ajax({ type: "post", url:"http://127.0.0.1:4564/bsky-app/templat ...
- 2018-2019 ACM-ICPC Nordic Collegiate Programming Contest (NCPC 2018) - 4.28
赛后补了几道 赛中我就写了两个... A - Altruistic AmphibiansGym - 101933A 看了眼榜没几个人做.就没看. 最后发现就是一个DP(但是我觉得复杂度有点迷) 题意: ...
- Git 操作命令
一.Git 基本配置 1.配置 命令:git config --global prop_name prop_value 如配置git用户名与邮箱: git config --global user. ...
- word 2013 标题设置多级列表
1.问题 要设置标题为多级列表,批量应用 2.解决 1选标题1 2选标题2 ...以此类推.点确定保存即可
- Codeforces Round #534 (Div. 1)
A 构造题 有一个44的方格 每次放入一个横向12或竖向2*1的方格 满了一行或一列就会消掉 求方案 不放最后一行 这样竖行就不会消 然后竖着的放前两行 横着的放第三行 循环放就可以啦 #includ ...
- 使用sshpass同时更新一台ubuntu和一台CentOS
1.在ubuntu上安装sshpass sudo apt install sshpass 2.分别在两台的root路径下放上升级脚本: cent:/root/upgrade.sh #!/bin/bas ...
- jdbc 连接各种数据库 CRUD
一,jdbc简介 SUN公司为了简化.统一对数据库的操作,定义了一套Java操作数据库的规范(接口),称之为JDBC.这套接口由数据库厂商去实现,这样,开发人员只需要学习jdbc接口,并通过jdbc加 ...
- Spring事务管理——基础会用篇
之前说到Spring的事务管理 一直很懵逼 ,只知道事务管理大概是干嘛的. 网上的博客都是用 银行转账来解释 事务管理,哈哈哈 那我也用这个吧,这个例子的确是最好的. 说是两个人相互转账,A转500块 ...