UOJ#129. 【NOI2015】寿司晚宴 动态规划
原文链接www.cnblogs.com/zhouzhendong/p/UOJ129.html
题解
考虑把大于等于 $\sqrt n$ 的质数和小于 $\sqrt n$ 的分开考虑:
1. 小于等于 $\sqrt n$ 的质数最多只有 8 个。
2. 一个小于等于 n 的正整数最多包含 1 个 大于 $\sqrt n$ 的质因子,所以不同的这种质因子可以分离。
考虑对双方掌控了哪些小于等于 $\sqrt n$ 的质数进行状压,然后按照除去小于等于 $\sqrt n$ 的因子后的值,将所有数分成若干类,考虑对同一类不同时出现在两个人手上的方案数进行 DP 即可。
时间复杂度 $O(3 ^ 8 \cdot n )$ 。
代码
#include <bits/stdc++.h>
#define clr(x) memset(x,0,sizeof (x))
#define For(i,a,b) for (int i=a;i<=b;i++)
#define Fod(i,b,a) for (int i=b;i>=a;i--)
#define pb(x) push_back(x)
#define mp(x,y) make_pair(x,y)
#define fi first
#define se second
#define real __zzd001
#define _SEED_ ('C'+'L'+'Y'+'A'+'K'+'I'+'O'+'I')
#define outval(x) printf(#x" = %d\n",x)
#define outvec(x) printf("vec "#x" = ");for (auto _v : x)printf("%d ",_v);puts("")
#define outtag(x) puts("----------"#x"----------")
#define outarr(a,L,R) printf(#a"[%d...%d] = ",L,R);\
For(_v2,L,R)printf("%d ",a[_v2]);puts("");
using namespace std;
typedef long long LL;
typedef unsigned long long ULL;
typedef vector <int> vi;
LL read(){
LL x=0,f=0;
char ch=getchar();
while (!isdigit(ch))
f|=ch=='-',ch=getchar();
while (isdigit(ch))
x=(x<<1)+(x<<3)+(ch^48),ch=getchar();
return f?-x:x;
}
const int N=505;
int n,mod;
void Add(int &x,int y){
if ((x+=y)>=mod)
x-=mod;
}
void Del(int &x,int y){
if ((x-=y)<0)
x+=mod;
}
int dp[2][1<<9][1<<9];
int p[8]={2,3,5,7,11,13,17,19};
int a[N],val[N],sit[N];
bool cmp(int a,int b){
return val[a]<val[b];
}
int main(){
n=read(),mod=read();
For(i,2,n){
a[i]=i;
val[i]=i,sit[i]=0;
For(j,0,7)
if (val[i]%p[j]==0){
sit[i]|=1<<j;
while (val[i]%p[j]==0)
val[i]/=p[j];
}
if (val[i]!=1)
sit[i]|=1<<8;
}
sort(a+2,a+n+1,cmp);
dp[0][0][0]=1;
For(id,2,n){
int v=a[id],s=sit[v];
int T0=id&1,T1=T0^1;
For(i,0,511){
int ii=i^511;
for (int j=ii;j>=0;j=(j-1)&ii){
dp[T1][i][j]=0;
if (!j)
break;
}
}
if (val[v]!=val[a[id-1]]){
For(i,0,511){
int ii=i^511;
for (int j=ii;j>=0;j=(j-1)&ii){
if (dp[T0][i][j]){
if (i>>8){
Add(dp[T0][i^1<<8][j],dp[T0][i][j]);
dp[T0][i][j]=0;
}
else if (j>>8){
Add(dp[T0][i][j^1<<8],dp[T0][i][j]);
dp[T0][i][j]=0;
}
}
if (!j)
break;
}
}
}
For(i,0,511){
int ii=i^511;
for (int j=ii;j>=0;j=(j-1)&ii){
if (dp[T0][i][j]){
Add(dp[T1][i][j],dp[T0][i][j]);
if (!(i&s))
Add(dp[T1][i][j|s],dp[T0][i][j]);
if (!(j&s))
Add(dp[T1][i|s][j],dp[T0][i][j]);
}
if (!j)
break;
}
}
}
int ans=0;
For(i,0,511)
For(j,0,511)
Add(ans,dp[(n&1)^1][i][j]);
cout<<ans<<endl;
return 0;
}
UOJ#129. 【NOI2015】寿司晚宴 动态规划的更多相关文章
- [UOJ#129][BZOJ4197][Noi2015]寿司晚宴
[UOJ#129][BZOJ4197][Noi2015]寿司晚宴 试题描述 为了庆祝 NOI 的成功开幕,主办方为大家准备了一场寿司晚宴.小 G 和小 W 作为参加 NOI 的选手,也被邀请参加了寿司 ...
- BZOJ_4197_[Noi2015]寿司晚宴_状态压缩动态规划
BZOJ_4197_[Noi2015]寿司晚宴_状态压缩动态规划 Description 为了庆祝 NOI 的成功开幕,主办方为大家准备了一场寿司晚宴.小 G 和小 W 作为参加 NOI 的选手,也被 ...
- [BZOJ4197][Noi2015]寿司晚宴
4197: [Noi2015]寿司晚宴 Time Limit: 10 Sec Memory Limit: 512 MBSubmit: 412 Solved: 279[Submit][Status] ...
- BZOJ 4197: [Noi2015]寿司晚宴( dp )
N^0.5以内的质数只有8个, dp(i, j, k)表示用了前i个大质数(>N^0.5), 2人选的质数(<=N^0.5)集合分别为j, k时的方案数. 转移时考虑当前的大质数p是给哪个 ...
- [NOI2015]寿司晚宴 --- 状压DP
[NOI2015]寿司晚宴 题目描述 为了庆祝NOI的成功开幕,主办方为大家准备了一场寿司晚宴. 小G和小W作为参加NOI的选手,也被邀请参加了寿司晚宴. 在晚宴上,主办方为大家提供了n−1种不同的寿 ...
- 【BZOJ4197】[Noi2015]寿司晚宴 状压DP+分解质因数
[BZOJ4197][Noi2015]寿司晚宴 Description 为了庆祝 NOI 的成功开幕,主办方为大家准备了一场寿司晚宴.小 G 和小 W 作为参加 NOI 的选手,也被邀请参加了寿司晚宴 ...
- BZOJ 4197: [Noi2015]寿司晚宴 状态压缩 + 01背包
4197: [Noi2015]寿司晚宴 Time Limit: 10 Sec Memory Limit: 512 MB Description 为了庆祝 NOI 的成功开幕,主办方为大家准备了一场寿 ...
- BZO4197 & 洛谷2150 & UOJ129:[NOI2015]寿司晚宴——题解
https://www.lydsy.com/JudgeOnline/problem.php?id=4197 https://www.luogu.org/problemnew/show/P2150 ht ...
- NOI2015 寿司晚宴
今年NOI确实是在下输了.最近想把当时不会做的题都写一下. 题意 从2到n(500)这些数字中,选若干分给A,若干分给B,满足不存在:A的某个数和B的某个数的GCD不等于1. 对于寿司晚宴这题,标准解 ...
- bzoj 4199 [NOI2015]寿司晚宴
Description 为了庆祝 NOI 的成功开幕,主办方为大家准备了一场寿司晚宴.小 G 和小 W 作为参加 NOI 的选手,也被邀请参加了寿司晚宴. 在晚宴上,主办方为大家提供了 n−1 种不同 ...
随机推荐
- SQL Server 中字段的精度问题
在工作中遇到,一个多表联合查询的情况,查询出来的有些字段精度太高,小数点后达到8个0,现在客户要求报表只要精确到0.01 ,就是只要小数点后面只要保存两位,另外还需要四舍五入 在网上找了点资料,自己测 ...
- JSP中EL很常用,怎样使用大于号、小于号、等于号等
JSP中EL很常用,怎样使用大于号.小于号.等于号等 符号 在EL中使用 常规 1 等于 eq == 2 不等于 ne != 3 大于 gt > 4 小于 lt < 5 大于等于 ge ...
- 1.9 分布式协调服务-Zookeeper(二)
zoo.cfg配置文件分析 tickTime=2000 zookeeper中最小的时间单位长度 (ms) initLimit=10 follower节点启动后与leader节点完成数据同步的时间 ...
- python try exception finally记录
try exception finally中,finally下的语句块始终会执行 测试finally代码 def test_try_exception(a, b): '''测试异常捕获语句''' re ...
- Luogu P2158 仪仗队 题解报告
题目传送门 [题目大意] 给定一个n×n的点方阵,求站在左下角的点能看到的点数 注意同一条直线上只能看到一个点 [思路分析] 因为是一个方阵,所以可以对称地算,那么对于半个方阵,这里假设是左上的半个方 ...
- java实现单链接的几种常用操作
public class ListNode { public int value; public ListNode next; public ListNode(int value) { this.va ...
- Spring Cloud 之 服务注册与发现实战
一. 启动Eureka Server集群 准备二台云主机,二个eureka server服务互相进行复制.准备二个application.yml配置,分别如下: application-server1 ...
- 编写MyCP.java 实现类似Linux下cp XXX1 XXX2的功能
题目:编写MyCP.java 实现类似Linux下cp XXX1 XXX2的功能 要求:MyCP支持两个参数: java MyCP -tx XXX1.txt XXX2.bin 用来把文本文件(内容为十 ...
- nginx,作为前端的你会多少?
--现在阅读的你,如果是个FE,相信你不是个纯切图仔.反之,如果是,该进阶了,老铁! 前端的我们,已经不仅仅是做页面,写样式了,我们还需要会做相关的服务器部署.废话不多说,下面就从前端的角度来讲以下n ...
- xPath Helper插件
xPath Helper插件 xPath helper是一款Chrome浏览器的开发者插件,安装了xPath helper后就能轻松获取HTML元素的xPath,程序员就再也不需要通过搜索html源代 ...