P1744 采购特价商品 题解(讲解图论)
图论的超级初级题目(模板题)
最短路径的模板题
图是啥?(白纸上的符号?)
对于一个拥有n个顶点的无向连通图,它的边数一定多于n-1条。若从中选择n-1条边,使得无向图仍然连通,则由n个顶点及这 n-1条边(弧)组成的图被称为原无向图的生成树。
换句话说,有边有点就是图。(本蒟蒻的理解是这样。。QWQ)
另外,还有一些与图有关的定义(很好理解,通俗一点):
阶:图中点的个数。
边:两个点间的连接
权值:边的长度
。。。想了解更多找度娘,她可能讲的比我通俗QWQ。
邻接矩阵:

进入正题:
题目背景
《爱与愁的故事第三弹·shopping》第一章。
题目描述
中山路店山店海,成了购物狂爱与愁大神的“不归之路”。中山路上有n(n<=100)家店,每家店的坐标均在-10000~10000之间。其中的m家店之间有通路。若有通路,则表示可以从一家店走到另一家店,通路的距离为两点间的直线距离。现在爱与愁大神要找出从一家店到另一家店之间的最短距离。你能帮爱与愁大神算出吗?
输入输出格式
输入格式:
共n+m+3行:
第1行:整数n
第2行~第n+1行:每行两个整数x和y,描述了一家店的坐标
第n+2行:整数m
第n+3行~第n+m+2行:每行描述一条通路,由两个整数i和j组成,表示第i家店和第j家店之间有通路。
第n+m+3行:两个整数s和t,分别表示原点和目标店
输出格式:
仅一行:一个实数(保留两位小数),表示从s到t的最短路径长度。
输入输出样例
说明
100%数据:n<=100,m<=1000
先预处理转化为邻接矩阵后再直接输出就可以了
具体算法为Floyd算法
上AC代码:
#include<cstdio>
#include<cstring>
#include<cmath>
#include<iostream>
using namespace std;
int n,m,a[][],e,g,aa,bb;//a用来存x,y坐标
double f[][];//f用来存路径的
int main(){
scanf("%d",&n);
for(int i=;i<=n;i++)
cin>>a[i][]>>a[i][]; //scanf("%d%d",&a[i][0],&a[i][1]);
scanf("%d",&m);
memset(f,0x7f,sizeof(f));
for(int i=;i<=m;i++)
{
scanf("%d%d",&e,&g);//代替x,y ,因为cmath中有x,y了(真的很无语啊)
f[g][e]=sqrt(pow(double(a[e][]-a[g][]),)+pow(double(a[e][]-a[g][]),));
f[e][g]=sqrt(pow(double(a[e][]-a[g][]),)+pow(double(a[e][]-a[g][]),));
}
scanf("%d%d",&aa,&bb);
for(int k=;k<=n;k++)//开启O(n^3)暴力模式——
for(int i=;i<=n;i++)
for(int j=;j<=n;j++)
{
if((i!=j)&&(i!=k)&&(j!=k)&&(f[i][j]>(f[i][k]+f[k][j])))
f[i][j]=f[i][k]+f[k][j];
}
printf("%0.2lf",f[aa][bb]);//暴力过后松一口气,直接输出您想要的点就行了
return ;
}
完结✿ヽ(°▽°)ノ✿
希望对大家有所帮助
P1744 采购特价商品 题解(讲解图论)的更多相关文章
- P1744 采购特价商品 最短路径
P1744 采购特价商品 图论-----最短路径算法 弗洛伊德算法 O(n^3) 代码: #include<iostream> #include<cstdio> #inclu ...
- 洛谷——P1744 采购特价商品
P1744 采购特价商品 题目背景 <爱与愁的故事第三弹·shopping>第一章. 题目描述 中山路店山店海,成了购物狂爱与愁大神的“不归之路”.中山路上有n(n<=100)家店, ...
- P1744 采购特价商品
原题链接 https://www.luogu.org/problemnew/show/P1744 一道最短路的模板题.....很简单吧 求最短路的方法有很多,但是对于刚学完Floyd的我,只会用这个. ...
- luogu P1744 采购特价商品
实话说我本来想找SPFA的题,结果我硬生生的把这道题做成了Floyd 先来看题,我们会发现如果把他所给的变量都输入,那么会发现用Floyd的解法,输入占了main函数的一半长度... 题目分为两步走: ...
- 洛谷 P1744 采购特价商品
题目背景 <爱与愁的故事第三弹·shopping>第一章. 题目描述 中山路店山店海,成了购物狂爱与愁大神的“不归之路”.中山路上有n(n<=100)家店,每家店的坐标均在-1000 ...
- 洛谷题解 P1744 【采购特价商品】
原题传送门 题目描述 中山路店山店海,成了购物狂爱与愁大神的"不归之路".中山路上有n(n<=100)家店,每家店的坐标均在-10000~10000之间.其中的m家店之间有通 ...
- 洛谷P3502 [POI2010]CHO-Hamsters感想及题解(图论+字符串+矩阵加速$dp\&Floyd$)
洛谷P3502 [POI2010]CHO-Hamsters感想及题解(图论+字符串+矩阵加速\(dp\&Floyd\)) 标签:题解 阅读体验:https://zybuluo.com/Junl ...
- 图论++【洛谷p1744】特价采购商品&&【一本通1342】最短路径问题
(虽然题面不是很一样,但是其实是一个题qwq) [传送门] 算法标签: 利用Floyed的o(n3)算法: (讲白了就是暴算qwq) 从任意一条单边路径开始.所有两点之间的距离是边的权,或者无穷大,如 ...
- Floyd-蒟蒻也能看懂的弗洛伊德算法(当然我是蒟蒻)
今天来讲点图论的知识,来看看最短路径的一个求法(所有的求法我以后会写,也有可能咕咕咕) 你们都说图看着没意思不好看,那今天就来点情景 暑假,_GC准备去一些城市旅游.有些城市之 ...
随机推荐
- vue 双向数据绑定原理
博客地址: https://ainyi.com/8 采用defineProperty的两个方法get.set 示例 <!-- 表单 --> <input type="tex ...
- Mysql 主键如何实现持久化
自增主键没有持久化是个比较早的bug,这点从其在官方bug网站的id号也可看出(https://bugs.mysql.com/bug.php?id=199) 首先,我们可以直观的重现如下. mysql ...
- python学习笔记(五)、抽象
不知不觉已经快毕业一年了,想想2018年过的可真舒适!!!社会就像一锅水,不同地方温度不同,2018年的我就身处温水中,没有一丝想要进取之心. 1 抽象 抽象在程序中可谓是神来之笔,辣么什么是抽象呢? ...
- Spring笔记02_注解_IOC
目录 Spring笔记02 1. Spring整合连接池 1.1 Spring整合C3P0 1.2 Spring整合DBCP 1.3 最终版 2. 基于注解的IOC配置 2.1 导包 2.2 配置文件 ...
- Spring框架基础(中)
Spring对不同持久化技术进行支持 JDBC 导入spring-jdbc-4.3.5.RELEASE.jar.spring-tx-4.3.5.RELEASE.jar 创建对象,设置数据库信息 创建j ...
- CSS3背景,渐变
1,有利于代码维护,有利于使用debug进行调试打断点.2,后面三个都存在计算,所以分开写最好.背景复合属性最好的写法,background:#abcdef url() no-repeat 50px ...
- location.origin兼容IE
if (window["context"] == undefined) { if (!window.location.origin) { window.location.origi ...
- Thrift 入门教程
1. 概述 thrift是一个软件框架,用来进行可扩展且跨语言的服务的开发.它结合了功能强大的软件堆栈和代码生成引擎,以构建在 C++, Java, Go,Python, PHP, Ruby, Erl ...
- 做了面向互联网部署的Dynamics 365 CE更改AD FS的登录页面
摘要: 微软动态CRM专家罗勇 ,回复306或者20190307可方便获取本文,同时可以在第一间得到我发布的最新博文信息,follow me!我的网站是 www.luoyong.me . 默认情况下A ...
- 解决centos7.0安装mysql后出现access defind for user@'localhost'的错误
在使用yum 安装完mariadb, mariadb-server, mariadb-devel后 1. rpm -qa | grep maria 查看maria相关库的是否在进程中 2. net ...