方便快捷的求导求积分解方程在线工具sage介绍
有时候我们需要进行一些复杂的数学计算,比如求导, 求积分,解方程,还是用abcd字母代表变量的方程等,这就需要进行复杂的数学运算还需要具备良好的数学基础。不过现在有一个非常方便的在线工具,只需要几秒钟, 就能告诉我们所有的答案。
sage
&ems;sage是一个免费开源的数学计算软件系统, 里面包含了许多的package,比如NumPy, SciPy, matplotlib, Sympy, Maxima, GAP, FLINT, R 等。默认情况下,既可以运行sage自身的语法, 也兼容python的语法。正因为内部整合了许多包,所以它的安装包非常大,当然,它也有在线版本SageMathCell实现方便的在线运算。SageMathCell:http://sagecell.sagemath.org/
sage介绍
输入框是代码框,点evaluate之后,会在下面出现结果框(计算的结果或者是画的图形), 并且在代码框右下方有一个切换语言的选项。代码框支持tab补全,支持? + 函数来查看函数帮助。
进行基本的运算
求导
x = var(x) #声明x为变量
f(x) = x^3 + x^2 +2 #定义函数f(x)
diff(f, x) #f(x) 对x 求导
不定积分
integral(f, x) # f(x) 对x不定积分
定积分
integral(f, x, 0, 1) #f(x) 对x 0,1 定积分
解方程
var('x y p q') #声明变量
eq1 = p+q==9 #等式1
eq2 = q*y+p*x==-6 #等式2
eq3 = q*y^2+p*x^2==24 #等式3
solve([eq1, eq2, eq3,p==1],p,q,x,y) #已知 p==1解方程
[[p == 1, q == 8, x == -4/3*sqrt(10) - 2/3, y == 1/6*sqrt(10) - 2/3], [p == 1, q == 8, x == 4/3*sqrt(10) - 2/3, y == -1/6*sqrt(10) - 2/3]]
泰勒展开
var('x a')
f(x) = sqrt(x+a)
taylor(f,x, 1, 2) #f(x)在1处水平为2进行泰勒展开
绘图
circle((0,0), 1, rgbcolor=(1,1,0)) #圆心为0,0半径为1的圆
以上只是作为基本的引入, 更多的内容可以自己去看manual,它具有几乎所有你能想象的到的非常强大的数学计算功能。
参考资料
Sage tutorial: http://doc.sagemath.org/html/en/tutorial/index.html
Philipp K. Janert, Data Analysis with Open Source Tools
方便快捷的求导求积分解方程在线工具sage介绍的更多相关文章
- BUAA-OO-表达式解析与求导
BUAA-OO-表达式解析与求导 解析 按照常规,解析这一部分我们分为词法分析与语法分析.当然由于待解析的字符串较简单,词法分析器和语法分析器不必单独实现. 词法分析器 按照常规,我们先手写一个词法分 ...
- OO_多项式求导_单元总结
概述: 面向对象第一单元的作业是三次难度依次递增的多项式求导.第一次作业是仅包含带符号整数和幂函数的多项式求导,例如:-1+xˆ233-xˆ06:第二次是在前面的基础上增加了三角函数的求导,例如:-1 ...
- 深度学习:Sigmoid函数与损失函数求导
1.sigmoid函数 sigmoid函数,也就是s型曲线函数,如下: 函数: 导数: 上面是我们常见的形式,虽然知道这样的形式,也知道计算流程,不够感觉并不太直观,下面来分析一下. 1.1 ...
- OO第一单元总结__多项式求导问题
作业一.含幂函数的简单多项式的求导 (1)基于度量的程序结构分析 1. 统计信息图: 2. 结构信息图: 3. 复杂度分析 基本复杂度(Essential Complexity (ev(G)).模块设 ...
- OO_Unit1_表达式求导总结
OO_Unit1_表达式求导总结 OO的第一单元主要是围绕表达式求导这一问题布置了3个子任务,并在程序的鲁棒性与模型的复杂度上逐渐升级,从而帮助我们更好地提升面向对象的编程能力.事实也证明,通过这 ...
- OO第一单元总结——求导
一.基于度量分析程序结构 (一)第一次作业 (1)设计思路 本次作业只涉及到简单幂函数通过加减运算而复合而成的函数,因此笔者自然的把函数分成了函数本体以及单个的项两个部分,在笔者的设计中两个类的功能如 ...
- OO第一单元总结——表达式求导
第一次作业 (1) UML结构图 (2)结构分析 Polynomial 类是对输入的字符串进行预处理,其中包括判断格式是否合法,运算符简化,分割成项等方法. Polynomial处理后得到的每一个项的 ...
- 面向对象第一单元总结:Java实现表达式求导
面向对象第一单元总结:Java实现表达式求导 题目要求 输入一个表达式:包含x,x**2,sin(),cos(),等形式,对x求导并输出结果 例:\(x+x**2+-2*x**2*(sin(x**2+ ...
- Deep learning:五十一(CNN的反向求导及练习)
前言: CNN作为DL中最成功的模型之一,有必要对其更进一步研究它.虽然在前面的博文Stacked CNN简单介绍中有大概介绍过CNN的使用,不过那是有个前提的:CNN中的参数必须已提前学习好.而本文 ...
随机推荐
- 函数节流和函数防抖JavaScript实现
函数节流 function throttle(fn, delay = 1000) { let Running = false; return function () { if (Running) { ...
- Java位运算原理及使用讲解
前言日常开发中位运算不是很常用,但是巧妙的使用位运算可以大量减少运行开销,优化算法.举个例子,翻转操作比较常见,比如初始值为1,操作一次变为0,再操作一次变为1.可能的做法是使用三木运算符,判断原始值 ...
- vs2013、vs2015使用.net4.5框架智能提示英文转成中文
安装完VS2013.VS2015使用.net framework 4.5框架时,代码补全中智能提示信息全是英文解决方案:关闭VS2013.VS2015:将zh-Hans 目录替换以下目录 C:\Pro ...
- 题解-BJOI2019 光线
Problem loj3093 & x谷 题意概要:给定 \(n\) 块玻璃,每块玻璃有其折射比例与反射比例(折射比例+反射比例 不一定为 \(100\%\)),求从最上头打下一束光,有多少比 ...
- 【interview】卡特兰数
涉及卡特兰数的题目列举,也是组合数学中一些例子: 详解链接 https://zh.wikipedia.org/wiki/%E5%8D%A1%E5%A1%94%E5%85%B0%E6%95%B0 1. ...
- SpingBoot+Mybaits+Vue,更新学习
1.DTO 2.实体类 3.Controller层,UpdatePrize/{id}为接口 4.Service层 5.Impl实现层 之后就可以更新数据了. 6.Vue链接接口 7.请求,解析,返回值 ...
- Android Wear 2.0 AlarmManager 后台定时任务
以前在Android 4.0时,alarmManager 没什么问题.后来android为了优化系统耗电情况,引入了doze模式,参见此页 https://developer.android.com/ ...
- 一个 戴尔 dell 笔记本 bios Preparing to begin setup 问题
昨天帮亲戚安装系统,是一个dell 笔记本,原本想的很简单,但是在修改了bios里的 SATA 模式后,不但系统启动不了,连bios都进不去了,就像一直在检测一个错误的硬件.google了很多,也没有 ...
- LeetCode 7. Reverse Integer(c语言版)
题目: Given a 32-bit signed integer, reverse digits of an integer. Example 1: Input: 123Output: 321 Ex ...
- 四 Memcache
官网http://memcached.org 了解 cookies和session 安装memcached # yum install memcached -y 安装nc和telnet 来管理mem ...