传送门

分析

考试的时候sb了......我们发现可以按照先序遍历将一棵树变成一个序列,而不需要删的数的数量便是最长上升子序列的长度,但是还有一个问题就是如果在5和7之间有3个空的位置就无法填入合法的数,但是按照此方法会将5和7划归为合法的。所以我们考虑将第i个数的权值变为原来的权值减去i,然后求一个最长不降子序列就行了。但是由于求解是n^2的,所以我们考虑用线段树来进行优化。我们建立一棵权值线段树,按顺序将其权值的位置变为其dp值,然后对于每次更新即为目前线段树中的权值不大于i的点的dp值的最大值。最终答案即为n减去这个最长不下降子序列的长度。

代码

#include<bits/stdc++.h>
using namespace std;
int n,a[],b[],son[][],d[],cnt,dp[],sum;
map<int,int>id;
inline void dfs(int x){
if(son[x][])dfs(son[x][]);cnt++;a[cnt]=d[x]-cnt;
if(son[x][])dfs(son[x][]);return;
}
inline void build(int le,int ri,int wh,int pl,int sum){
d[wh]=max(d[wh],sum);if(le==ri)return;int mid=(le+ri)>>;
if(mid>=pl)build(le,mid,wh<<,pl,sum);
else build(mid+,ri,wh<<|,pl,sum);
}
inline int q(int le,int ri,int x,int y,int wh){
if(le>=x&&ri<=y)return d[wh];int mid=(le+ri)>>,ans=;
if(mid>=x)ans=max(ans,q(le,mid,x,y,wh<<));
if(mid<y)ans=max(ans,q(mid+,ri,x,y,wh<<|));
return ans;
}
int main(){
int i,x,y;scanf("%d",&n);for(i=;i<=n;i++)scanf("%d",&d[i]);
for(i=;i<=n;i++)scanf("%d%d",&x,&y),son[x][y]=i;
dfs();memset(d,,sizeof(d));for(i=;i<=cnt;i++)b[i]=a[i];
sort(b+,b+cnt+);for(i=;i<=n;i++)if(!id[b[i]])id[b[i]]=++sum;
build(,sum,,id[a[]],);for(i=;i<=cnt;i++)
x=q(,sum,,id[a[i]],),build(,sum,,id[a[i]],x+);
printf("%d\n",n-q(,sum,,sum,));
return ;
}

ZROI2018普转提day2t3的更多相关文章

  1. ZROI2018普转提day6t1

    传送门 分析 记录区间最大值,线段树上二分找比这个点大的最靠前位置即可 代码 #include<iostream> #include<cstdio> #include<c ...

  2. ZROI2018普转提day6t3

    传送门 分析 居然卡哈希数,万恶的出题人...... 感觉我这个方法似乎比较呆,我的代码成功成为了全网最慢的代码qwq 应该是可以直接哈希的 但由于我哈希学的不好又想练练线段树维护哈希,于是就写了个线 ...

  3. ZROI2018普转提day7t1

    传送门 分析 一道有意思的小题... 我们发现如果$(1,1)$为白色,则将其变为白色需要偶数次操作,而如果为黑色则需要奇数次操作 我们知道要让A赢需要奇数次操作,所以我们只需要判断$(1,1)$的颜 ...

  4. ZROI2018普转提day7t2

    传送门 分析 首先我们不难想到我们一定可以将每一个点分开算,然后看这个点被几个矩形包含 于是对于位置为$(i,j)$的点它被包含的次数为$i * (n-i+1) * j * (m-j+1)$ 这个式子 ...

  5. ZROI2018普转提day1t4

    传送门 分析 就是飞飞侠这道题...... 我们可以将这张图建成好几层,每一层可以向下一层的上下左右无代价移动,而对于每个点如果付b[i][j]的代价就可以走到比它高a[i][j]的层上.我们用这种方 ...

  6. ZROI2018普转提day1t1

    传送门 分析 我们先二分一下最终的平均值mid,然后让序列中的每一个数都减去这个mid,之后用新序列的前缀和建一棵线段树,枚举起点i,然后求出此时在i+L-1~i+R-1范围内的前缀和的最大值,用这个 ...

  7. ZROI2018普转提day2t4

    传送门 分析 考场上暴力水过好评... 然后我的st表查询似乎是log的,然后log三方跑的比log方快,qwq. 我们发现如果一个区间的最小值就是这个区间的gcd,则这个区间合法.所以我们二分区间长 ...

  8. ZROI2018普转提day2t2

    传送门 分析 我们发现2R+C实际就相当于R行C列的子集的个数.因此我们可以将所有集合的子集个数转换为每个集合属于的集合的个数.所以我们可以求出: 这个式子的意义为对于选i行j列的情况的所有方案乘上i ...

  9. ZROI2018普转提day2t1

    传送门 分析 我们通过仔细研究不难发现对于一次交换(i,i+1)的操作之后,在i之前的点就不可能跑到i之后,i+1之后的的点也不可能跑到i+1之前,所以这个序列在一次交换之后就相当于被分成了两个部分. ...

随机推荐

  1. LeetCode OJ:Balanced Binary Tree(平衡二叉树)

    Given a binary tree, determine if it is height-balanced. For this problem, a height-balanced binary ...

  2. Linux-Crontab服务

    1.安装并检查Crontab服务 检查cron服务: 检查Crontab工具是否安装:crontab -l 检查crond服务是否启动:service crond status 安装cron: yum ...

  3. 如何安装Microsoft Visual C++6.0

    Microsoft Visual C++6.0作为新手C语言编程软件,被大家广为使用,然而许多人为拷贝来的C++6.0安装包如何安装感到苦恼,因此许多同学都是以安装失败,安装不成 功而告终.接下来我就 ...

  4. 【整理】C++中的unique函数

    之前总结了一下我觉得有用的erase,lower_bound,upper_bound. 现在总结一下unique,unique的作用是“去掉”容器中相邻元素的重复元素(不一定要求数组有序),它会把重复 ...

  5. 安装Windows系统指南

    安装系统指南 WIN10PE内核与WIN8PE内核区别: Win10PE内核支持NVME(M.2)新硬盘,WIN8PE不支持NVME. 但是WIN8PE对老机器的适配更好一些,其他功能均一致. 多一个 ...

  6. bzoj 2013: A huge tower 数学

    题目: 有\(N(2\leq N\leq 620000)\)块砖,要搭一个\(N\)层的塔,要求:如果砖\(A\)在砖\(B\)上面,那么\(A\)不能比\(B\)的长度\(+D\)要长.问有几种方法 ...

  7. hadoop-hive学习笔记

    create table hive_1(id string,name string ,gender string)row format delimited fields terminated by ' ...

  8. as3设计模式乱用之工厂模式

    好久没写技术相关的日记了,一忙,二懒,三则被这单调的生活熏得没什么感悟. 其实这篇日记早就想写了,项目开发初期的时候,带学生.经常看到那种乱用设计模式的现象.一方面,公司面试人的时候喜欢问设计模式,另 ...

  9. ICanPay介绍

    ICanPay介绍 ICanPay是一个支持多商户多种支付方式的跨平台网关处理类库,使用ICanPay可以简化订单的创建.查询.退款和接收网关返回的支付通知等操作. 目前支持的支付网关有:支付宝(Al ...

  10. Linux内核 - 定时器

    #include <linux/timer.h> //头文件 struct timer_list mytimer; //定义变量 static void my_timer(unsigned ...