题目描述

一个等差数列是一个能表示成a, a+b, a+2b,..., a+nb (n=0,1,2,3,...)的数列。

在这个问题中a是一个非负的整数,b是正整数。写一个程序来找出在双平方数集合(双平方数集合是所有能表示成p的平方 + q的平方的数的集合,其中p和q为非负整数)S中长度为n的等差数列。

输入输出格式

输入格式:

第一行: N(3<= N<=25),要找的等差数列的长度。

第二行: M(1<= M<=250),搜索双平方数的上界0 <= p,q <= M。

输出格式:

如果没有找到数列,输出`NONE'。

如果找到了,输出一行或多行, 每行由二个整数组成:a,b。

这些行应该先按b排序再按a排序。

所求的等差数列将不会多于10,000个。

输入输出样例

输入样例#1:
复制

5
7
输出样例#1: 复制

1 4
37 4
2 8
29 8
1 12
5 12
13 12
17 12
5 20
2 24

说明

题目翻译来自NOCOW。

USACO Training Section 1.4

枚举前两项,看是否满足;

#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cstdlib>
#include<cstring>
#include<string>
#include<cmath>
#include<map>
#include<set>
#include<vector>
#include<queue>
#include<bitset>
#include<ctime>
#include<deque>
#include<stack>
#include<functional>
#include<sstream>
//#include<cctype>
//#pragma GCC optimize(2)
using namespace std;
#define maxn 200005
#define inf 0x7fffffff
//#define INF 1e18
#define rdint(x) scanf("%d",&x)
#define rdllt(x) scanf("%lld",&x)
#define rdult(x) scanf("%lu",&x)
#define rdlf(x) scanf("%lf",&x)
#define rdstr(x) scanf("%s",x)
typedef long long ll;
typedef unsigned long long ull;
typedef unsigned int U;
#define ms(x) memset((x),0,sizeof(x))
const long long int mod = 1e9 + 7;
#define Mod 1000000000
#define sq(x) (x)*(x)
#define eps 1e-3
typedef pair<int, int> pii;
#define pi acos(-1.0)
//const int N = 1005;
#define REP(i,n) for(int i=0;i<(n);i++)
typedef pair<int, int> pii;
inline ll rd() {
ll x = 0;
char c = getchar();
bool f = false;
while (!isdigit(c)) {
if (c == '-') f = true;
c = getchar();
}
while (isdigit(c)) {
x = (x << 1) + (x << 3) + (c ^ 48);
c = getchar();
}
return f ? -x : x;
} ll gcd(ll a, ll b) {
return b == 0 ? a : gcd(b, a%b);
}
int sqr(int x) { return x * x; } /*ll ans;
ll exgcd(ll a, ll b, ll &x, ll &y) {
if (!b) {
x = 1; y = 0; return a;
}
ans = exgcd(b, a%b, x, y);
ll t = x; x = y; y = t - a / b * y;
return ans;
}
*/ int n, m;
struct node {
int a, b;
}nd[maxn];
bool cmp(node x, node y) {
if (x.b < y.b)return true;
if (x.b == y.b&&x.a < y.a)return true;
return false;
}
int ans;
bool fg[maxn]; int main() {
//ios::sync_with_stdio(0);
rdint(n); rdint(m);
for (int i = 0; i <= m; i++)
for (int j = 0; j <= m; j++)fg[i*i + j * j] = true;
int maxx = m * m * 2;
for (int i = 0; i <= maxx; i++) {
if (fg[i]) {
for (int j = i + 1; j <= maxx; j++) {
if (fg[j]) {
int dt = j - i;
int Max = i + dt * (n - 1);
if (Max > maxx)break;
bool f = true;
for (int k = i + dt; k <= Max; k += dt) {
if (!fg[k]) {
f = false; break;
}
}
if (f) {
nd[++ans].a = i;
nd[ans].b = dt;
}
}
}
}
}
if (ans == 0) {
cout << "NONE" << endl;
}
else {
sort(nd + 1, nd + 1 + ans, cmp);
for (int i = 1; i <= ans; i++) {
cout << nd[i].a << ' ' << nd[i].b << endl;
}
}
return 0;
}

[USACO1.4]等差数列 Arithmetic Progressions的更多相关文章

  1. 洛谷P1214 [USACO1.4]等差数列 Arithmetic Progressions

    P1214 [USACO1.4]等差数列 Arithmetic Progressions• o 156通过o 463提交• 题目提供者该用户不存在• 标签USACO• 难度普及+/提高 提交 讨论 题 ...

  2. luogu P1214 [USACO1.4]等差数列 Arithmetic Progressions

    题目描述 一个等差数列是一个能表示成a, a+b, a+2b,..., a+nb (n=0,1,2,3,...)的数列. 在这个问题中a是一个非负的整数,b是正整数.写一个程序来找出在双平方数集合(双 ...

  3. 等差数列Arithmetic Progressions题解(USACO1.4)

    Arithmetic Progressions USACO1.4 An arithmetic progression is a sequence of the form a, a+b, a+2b, . ...

  4. poj 3006 Dirichlet's Theorem on Arithmetic Progressions【素数问题】

    题目地址:http://poj.org/problem?id=3006 刷了好多水题,来找回状态...... Dirichlet's Theorem on Arithmetic Progression ...

  5. USACO 1.4 Arithmetic Progressions

    Arithmetic Progressions An arithmetic progression is a sequence of the form a, a+b, a+2b, ..., a+nb ...

  6. [Educational Codeforces Round 16]D. Two Arithmetic Progressions

    [Educational Codeforces Round 16]D. Two Arithmetic Progressions 试题描述 You are given two arithmetic pr ...

  7. Dirichlet's Theorem on Arithmetic Progressions 分类: POJ 2015-06-12 21:07 7人阅读 评论(0) 收藏

    Dirichlet's Theorem on Arithmetic Progressions Time Limit: 1000MS   Memory Limit: 65536K Total Submi ...

  8. POJ 3006 Dirichlet's Theorem on Arithmetic Progressions (素数)

    Dirichlet's Theorem on Arithmetic Progressions Time Limit: 1000MS   Memory Limit: 65536K Total Submi ...

  9. (素数求解)I - Dirichlet&#39;s Theorem on Arithmetic Progressions(1.5.5)

    Time Limit:1000MS     Memory Limit:65536KB     64bit IO Format:%I64d & %I64u Submit cid=1006#sta ...

随机推荐

  1. 关于MFC预处理命令

    MFC程序生成EXE文件的过程是:预处理-编译-链接-打包生成exe文件.(预编译是编译过程,即将一些常用的不经常改变的文件先进行编译处理生成中间文件,以节省时间,它不属于预处理,在VS项目属性的C/ ...

  2. IP通信中音频编解码技术与抗丢包技术概要

    此文较长,建议收藏起来看. 一.一个典型的IP通信模型 二.Server2Server技术分类 Server2Server这块也是一个专门的领域,这里只简单分个类. 1.同一国家相同运营商之间: 同一 ...

  3. Maven(5)-优化和重构POM

    本文主要介绍如何优化pom,杜绝重复(DRY). 1)模块重复依赖: 2)坐标版本号重复: 3)兄弟依赖 一.项目骨架 上图说明: multi-module-project是一个有多个模块构成的项目, ...

  4. HDOJ5441(图论中的并查集)

    #include<cstdio> #include<cstring> #include<algorithm> using namespace std; ; ; ; ...

  5. 【转】 Pro Android学习笔记(七三):HTTP服务(7):AndroidHttpClient

    文章转载只能用于非商业性质,且不能带有虚拟货币.积分.注册等附加条件,转载须注明出处:http://blog.csdn.net/flowingflying/ 不知道此文是否是这个系列中最短的一篇.我们 ...

  6. hdu 1506 单调栈问题

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1506 题目的意思其实就是要找到一个尽可能大的矩形来完全覆盖这个矩形下的所有柱子,只能覆盖柱子,不能留空 ...

  7. 【java并发编程艺术学习】(四)第二章 java并发机制的底层实现原理 学习记录(二) synchronized

    章节介绍 本章节主要学习 Java SE 1.6 中为了减少获得锁 和 释放锁 时带来的性能消耗 而引入的偏向锁 和 轻量级锁,以及锁的存储结构 和 升级过程. synchronized实现同步的基础 ...

  8. 利用包管理器安装Node.JS

    步骤1:用curl获取源代码在我们用卷曲获取源代码之前,我们必须先升级操作系统,然后用卷发命令获取NodeSource添加到本地仓库. root@ubuntu-15:~#apt-get update安 ...

  9. spring 4.0 JUnit简单的Controller测试

    比Dao和Service的测试稍微复杂一点.还是先写一个BasicWebTest用来总体配置: @WebAppConfiguration @ContextConfiguration(locations ...

  10. 第六课 ROS的空间描述和变换

    1.空间描述与变换 有两个坐标系A和B,B坐标系中有一个点P,如何把B坐标系中的P映射到A坐标系呢,这就涉及到空间描述与变换, 先看一下旋转矩阵: 上面中间的行向量中的元素表示在B坐标系当中的元素用A ...