AT2689 Prime Flip
传送门
这个题是真的巧妙
首先一个很巧妙的思路,差分
考虑假如\(a_i!=a_{i-1}\),则\(b_i=1\),否则\(b_i=0\)
这样一来,一个区间的翻转就变成了对于两个数的取反了
然后我们来考虑一下取反的代价(没错这个题我就只想到了这个)
1、假如距离是奇质数,只要1步,显然
2、假如距离是偶数,引用一下哥德巴赫猜想,2步即可
3、假如距离是奇合数,就是3步(奇质数+偶数)
显然我们可以把这些\(b_i=1\)的按照奇偶性分为2组
组内距离一定是奇数,组与组之间可能是奇质数也可能是奇合数
但是我们显然需要距离为奇质数最多,所以考虑将两组间距离为奇质数的连边,跑二分图最大匹配
然后假设最大匹配是\(k\),两组的size分别是\(size1,size2\)
那么答案显然是\(ans=k+\lfloor\frac{size1-k}{2}\rfloor*2+\lfloor\frac{size2-k}{2}\rfloor*2+(size1-k)\%2*3\)
代码:
#include<cstdio>
#include<algorithm>
#include<cstring>
#include<iostream>
#include<queue>
#include<cmath>
using namespace std;
void read(int &x){
char ch;bool ok;
for(ok=0,ch=getchar();!isdigit(ch);ch=getchar())if(ch=='-')ok=1;
for(x=0;isdigit(ch);x=x*10+ch-'0',ch=getchar());if(ok)x=-x;
}
#define rg register
const int maxn=210;bool vis[maxn];
int f[maxn],n,ans,a[maxn],mp[maxn][maxn],b[maxn],tot1,tot2,x[maxn];
bool check(int x){
if((!(x&1))||x==1)return 0;
int n=sqrt(x);
for(rg int i=2;i<=n;i++)
if(!(x%i))return 0;
return 1;
}
bool dfs(int x){
for(rg int i=1;i<=tot2;i++)
if(!vis[i]&&mp[x][i]){
vis[i]=1;
if(!f[i]||dfs(f[i]))return f[i]=x,1;
}
return 0;
}
int main(){
read(n);
for(rg int i=1;i<=n;i++)read(x[i]);
if(n==1){printf("3\n");return 0;}
for(rg int i=1;i<=n;i++){
if(x[i+1]-x[i]!=1||i==n){
if((x[i]+1)%2==0)a[++tot1]=x[i]+1;
else b[++tot2]=x[i]+1;
}
if(x[i]-x[i-1]!=1||i==1){
if(x[i]&1)b[++tot2]=x[i];
else a[++tot1]=x[i];
}
}
for(rg int i=1;i<=tot1;i++)
for(rg int j=1;j<=tot2;j++)
if(check(abs(a[i]-b[j])))mp[i][j]=1;
for(rg int i=1;i<=tot1;i++){
memset(vis,0,sizeof vis);
if(dfs(i))ans++;
}
printf("%d\n",ans+(tot1-ans)/2*2+(tot2-ans)/2*2+(tot1-ans)%2*3);
}
AT2689 Prime Flip的更多相关文章
- [Arc080F]Prime Flip
[Arc080F]Prime Flip Description 你有无限多的"给给全",编号为1,2,3,....开始时,第x1,x2,...,xN个"给给全" ...
- AT2689 [ARC080D] Prime Flip
简要题解如下: 区间修改问题,使用差分转化为单点问题. 问题变成,一开始有 \(2n\) 个点为 \(1\),每次操作可以选择 \(r - l\) 为奇质数的两个点 \(l, r\) 使其 ^ \(1 ...
- Prime Flip AtCoder - 2689
发现我们每次区间取反,相邻位置的正反关系只有两个位置发生改变 我们定义bi为ai和ai-1的正反关系,即ai=ai-1时bi=0,否则bi=1,每次取反l~r,b[l]和b[r+1]会发生改变 容易发 ...
- 【arc080F】Prime Flip
Portal --> arc080_f Solution 这题的话..差分套路题(算吗?反正就是想到差分就很好想了qwq) (但是问题就是我不会这种套路啊qwq题解原话是:&quo ...
- 【ARC080F】Prime Flip 差分+二分图匹配
Description 有无穷个硬币,初始有n个正面向上,其余均正面向下. 你每次可以选择一个奇质数p,并将连续p个硬币都翻转. 问最小操作次数使得所有硬币均正面向下. Input 第一行 ...
- 【Atcoder】ARC 080 F - Prime Flip
[算法]数论,二分图最大匹配 [题意]有无限张牌,给定n张面朝上的牌的坐标(N<=100),其它牌面朝下,每次操作可以选定一个>=3的素数p,并翻转连续p张牌,求最少操作次数使所有牌向下. ...
- [atARC080F]Prime Flip
构造一个数组$b_{i}$(初始为0),对于操作$[l_{i},r_{i}]$,令$b_{l_{i}}$和$b_{r_{i}+1}$值异或1,表示$i$和$i-1$的差值发生改变,最终即要求若干个$b ...
- Java基础之写文件——从多个缓冲区写(GatheringWrite)
控制台程序,使用单个写操作将数据从多个缓冲区按顺序传输到文件,这称为集中写(GatheringWrite)操作.这个功能的优势是能够避免在将信息写入到文件中之前将信息复制到单个缓冲区中.从每个缓冲区写 ...
- Atcoder 乱做
最近感觉自己思维僵化,啥都不会做了-- ARC103 F Distance Sums 题意 给定第 \(i\) 个点到所有点的距离和 \(D_i\) ,要求构造一棵合法的树.满足第 \(i\) 个点到 ...
随机推荐
- 关于DLL调试的两个工具(dependency walker和dumpbin.exe)
Dependency Walker工具: 该工具用来查看dll依赖库和依赖库内的函数. 左上角:模块依赖树,表示该dll所依赖的其它dll文件 右上角:导入函数,即与当前根模块有关系的函数(即根模块或 ...
- PostgreSQL聚合函数的filter子句
一张表存储了学生id,科目,分数三个字段,求每个学生60分以下与参加的总科目占比.(今天电脑不好用,图片总是这样) 其实一个count(*) filter 就可以查出来,但是没用过PG的一个人竟然说 ...
- ACM学习历程—HDU5637 Transform(数论 && 最短路)
题目链接:http://codeforces.com/problemset/problem/590/A 题目大意是给两种操作,然后给你一个s,一个t,求s至少需要多少次操作到t. 考虑到第一种操作是将 ...
- tarjan求割点
首先给大家一个网址讲的比较细:http://www.cnblogs.com/en-heng/p/4002658.html 如果还有不懂的话,可以回来再看看我的文章; 概念明确: 树边:(在[2]中称为 ...
- BZOJ1707:[Usaco2007 Nov]tanning分配防晒霜
我对贪心的理解:https://www.cnblogs.com/AKMer/p/9776293.html 题目传送门:https://www.lydsy.com/JudgeOnline/problem ...
- android开发中 解决服务器端解析MySql数据时中文显示乱码的情况
首先,还是确认自己MySql账户和密码 1.示例 账户:root 密码:123456 有三个字段 分别是_id .username(插入有中文数据).password 1)首先我们知道 ...
- rsync 介绍和参数说明
Rsync 介绍: 我们经常需要在不同目录或者服务器之间做文件同步和更新,Linux提供了很多内置命令可以使用比如scp等等,但是今天我们介绍一个更加强大的工具rsync.rsync 命令是一个远程同 ...
- HDOJ1150(最小点集覆盖)
#include <cstdio> #include <cstdlib> #include <cstring> #include <algorithm> ...
- pythoon_interview_redit
easy/intermediate What are Python decorators and how would you use them?How would you setup many pro ...
- for循环及break和continue的区别
1.For循环 格式: for( 初始语句 ; 执行条件 ; 增量 ){ 循环体 } 执行顺序:1.初始语句 2.执行条件是否符合 3.循环体 4.增加增量 初始化语句只在循环开始前执行一次,每次 ...