AT2689 Prime Flip
传送门
这个题是真的巧妙
首先一个很巧妙的思路,差分
考虑假如\(a_i!=a_{i-1}\),则\(b_i=1\),否则\(b_i=0\)
这样一来,一个区间的翻转就变成了对于两个数的取反了
然后我们来考虑一下取反的代价(没错这个题我就只想到了这个)
1、假如距离是奇质数,只要1步,显然
2、假如距离是偶数,引用一下哥德巴赫猜想,2步即可
3、假如距离是奇合数,就是3步(奇质数+偶数)
显然我们可以把这些\(b_i=1\)的按照奇偶性分为2组
组内距离一定是奇数,组与组之间可能是奇质数也可能是奇合数
但是我们显然需要距离为奇质数最多,所以考虑将两组间距离为奇质数的连边,跑二分图最大匹配
然后假设最大匹配是\(k\),两组的size分别是\(size1,size2\)
那么答案显然是\(ans=k+\lfloor\frac{size1-k}{2}\rfloor*2+\lfloor\frac{size2-k}{2}\rfloor*2+(size1-k)\%2*3\)
代码:
#include<cstdio>
#include<algorithm>
#include<cstring>
#include<iostream>
#include<queue>
#include<cmath>
using namespace std;
void read(int &x){
char ch;bool ok;
for(ok=0,ch=getchar();!isdigit(ch);ch=getchar())if(ch=='-')ok=1;
for(x=0;isdigit(ch);x=x*10+ch-'0',ch=getchar());if(ok)x=-x;
}
#define rg register
const int maxn=210;bool vis[maxn];
int f[maxn],n,ans,a[maxn],mp[maxn][maxn],b[maxn],tot1,tot2,x[maxn];
bool check(int x){
if((!(x&1))||x==1)return 0;
int n=sqrt(x);
for(rg int i=2;i<=n;i++)
if(!(x%i))return 0;
return 1;
}
bool dfs(int x){
for(rg int i=1;i<=tot2;i++)
if(!vis[i]&&mp[x][i]){
vis[i]=1;
if(!f[i]||dfs(f[i]))return f[i]=x,1;
}
return 0;
}
int main(){
read(n);
for(rg int i=1;i<=n;i++)read(x[i]);
if(n==1){printf("3\n");return 0;}
for(rg int i=1;i<=n;i++){
if(x[i+1]-x[i]!=1||i==n){
if((x[i]+1)%2==0)a[++tot1]=x[i]+1;
else b[++tot2]=x[i]+1;
}
if(x[i]-x[i-1]!=1||i==1){
if(x[i]&1)b[++tot2]=x[i];
else a[++tot1]=x[i];
}
}
for(rg int i=1;i<=tot1;i++)
for(rg int j=1;j<=tot2;j++)
if(check(abs(a[i]-b[j])))mp[i][j]=1;
for(rg int i=1;i<=tot1;i++){
memset(vis,0,sizeof vis);
if(dfs(i))ans++;
}
printf("%d\n",ans+(tot1-ans)/2*2+(tot2-ans)/2*2+(tot1-ans)%2*3);
}
AT2689 Prime Flip的更多相关文章
- [Arc080F]Prime Flip
[Arc080F]Prime Flip Description 你有无限多的"给给全",编号为1,2,3,....开始时,第x1,x2,...,xN个"给给全" ...
- AT2689 [ARC080D] Prime Flip
简要题解如下: 区间修改问题,使用差分转化为单点问题. 问题变成,一开始有 \(2n\) 个点为 \(1\),每次操作可以选择 \(r - l\) 为奇质数的两个点 \(l, r\) 使其 ^ \(1 ...
- Prime Flip AtCoder - 2689
发现我们每次区间取反,相邻位置的正反关系只有两个位置发生改变 我们定义bi为ai和ai-1的正反关系,即ai=ai-1时bi=0,否则bi=1,每次取反l~r,b[l]和b[r+1]会发生改变 容易发 ...
- 【arc080F】Prime Flip
Portal --> arc080_f Solution 这题的话..差分套路题(算吗?反正就是想到差分就很好想了qwq) (但是问题就是我不会这种套路啊qwq题解原话是:&quo ...
- 【ARC080F】Prime Flip 差分+二分图匹配
Description 有无穷个硬币,初始有n个正面向上,其余均正面向下. 你每次可以选择一个奇质数p,并将连续p个硬币都翻转. 问最小操作次数使得所有硬币均正面向下. Input 第一行 ...
- 【Atcoder】ARC 080 F - Prime Flip
[算法]数论,二分图最大匹配 [题意]有无限张牌,给定n张面朝上的牌的坐标(N<=100),其它牌面朝下,每次操作可以选定一个>=3的素数p,并翻转连续p张牌,求最少操作次数使所有牌向下. ...
- [atARC080F]Prime Flip
构造一个数组$b_{i}$(初始为0),对于操作$[l_{i},r_{i}]$,令$b_{l_{i}}$和$b_{r_{i}+1}$值异或1,表示$i$和$i-1$的差值发生改变,最终即要求若干个$b ...
- Java基础之写文件——从多个缓冲区写(GatheringWrite)
控制台程序,使用单个写操作将数据从多个缓冲区按顺序传输到文件,这称为集中写(GatheringWrite)操作.这个功能的优势是能够避免在将信息写入到文件中之前将信息复制到单个缓冲区中.从每个缓冲区写 ...
- Atcoder 乱做
最近感觉自己思维僵化,啥都不会做了-- ARC103 F Distance Sums 题意 给定第 \(i\) 个点到所有点的距离和 \(D_i\) ,要求构造一棵合法的树.满足第 \(i\) 个点到 ...
随机推荐
- 一文读懂所有的编码方式(UTF-8、GBK、Unicode、宽字节...)
编码方式就分两类:ANSI编码.Unicode编码.这两类编码都兼容ASC码. ------------------------------------------------------------ ...
- log4j No appenders could be found for logger
在main中加一句:BasicConfigurator.configure();
- Struts2 - 值栈(ValueStack)
1. 关于值栈: 1). helloWorld 时, ${productName} 读取 productName 值, 实际上该属性并不在 request 等域对象中, 而是从值栈中获取的. 2). ...
- 如何用Mendeley引用目标期刊要求的参考文献格式
如果我们要向目标的杂志期刊投稿,则需要采用该期刊的参考文献格式.我用的mendeley管理文献,不收费且使用方便.那么,我们如何用mendeley引用目标期刊的参考文献呢?以Applied energ ...
- 什么是DMIPS
MIPS: Million Instructions executed Per Second,每秒百万条指令,用来计算同一秒内系统的处理能力 DMIPS: Dhrystone Million Inst ...
- bzoj 3881: [Coci2015]Divljak AC自动机
题目大意: http://www.lydsy.com/JudgeOnline/problem.php?id=3881 题解: 这道题我想出了三种做法,不过只有最后一种能过. 第一种: 首先我们把所有的 ...
- 【LeetCode】033. Search in Rotated Sorted Array
题目: Suppose an array sorted in ascending order is rotated at some pivot unknown to you beforehand. ( ...
- Percona Xtrabackup 备份MySQL 实例(转)
老规矩,开场白,刚开始用mysqldump,备份100G+的数据库,再加上服务器繁忙,备份速度像蜗牛似的,于是寻找更高效的备份方法.网上都说用xtrabackup比较适合备份大的数据库,而且备份效率也 ...
- Hive 启动 Diagnostic Messages for this Task: java.lang.Throwable: Child Error
Diagnostic Messages for this Task: java.lang.Throwable: Child Error at org.apache.hadoop.mapred.Task ...
- USACO-Friday the Thirteenth(黑色星期五)-Section1.2<3>
[英文原题] Friday the Thirteenth Is Friday the 13th really an unusual event? That is, does the 13th of t ...