BZOJ2038 [2009国家集训队]小Z的袜子(hose)(莫队算法)
神奇的莫队算法,用来解决可离线无修改的区间查询问题:
- 首先对原序列进行分块,√n块每块√n个;
- 然后对所有查询的区间[l,r]进行排序,首先按l所在的块序号升序排序,如果一样就按r升序排序;
- 最后就按顺序一个一个求出各个查询的结果:知道[l,r]的答案,并且在此基础上能在比较快地在O(x)得到相邻区间[l+1,r]、[l-1,r]、[l,r-1]、[l,r+1]的答案,那样就能从[l,r]的基础上对lr加加减减得到任意一个区间[l',r']的答案。
看似暴力,但这样做的时间复杂度是O(x*n*√n) !因为:
- l是按其所在块序号排列,同一块里面一次最多√n次++l或--l到达目标;一块最多大概√n次加加减减;总共√n块;所以l改变的次数顶多也就√n*√n*√n。
- r在同一块是升序的,所以同一块最多n次++r;下一块时r假设在上一块到达最远,那最多n次--r回到目标;总共√n块;所以r改变次数顶多也就(n+n)*√n。
- 而每次加加减减转移新答案的代价是x,所以时间复杂度是O(x*n*√n) !
这一题,设每个区间[l,r]各个颜色的袜子数分别为$a,b,c,d,\dots$,每个区间[l,r]的答案就是$(C_a^2+C_b^2+C_c^2+C_d^2+\cdots)/C_{r-l+1}^2$,展开化简得:
$$(a^2+b^2+c^2+d^2+\cdots-a-b-c-d-\cdots)/((r-l+1)*(r-l+1-1))$$
$$(a^2+b^2+c^2+d^2+\cdots-(r-l+1))/((r-l+1)*(r-l))$$
其中$(a^2+b^2+c^2+d^2+\cdots)$便可作为莫队算法处理的区间答案,开个数组记录abcd...的个数可以在O(1)转移到相邻区间。
另外特判区间l=r的情况。。
#include<cstdio>
#include<cstring>
#include<cmath>
#include<algorithm>
using namespace std;
#define MAXN 55555 int block;
struct Query{
int i,l,r;
bool operator<(const Query &q)const{
if(l/block==q.l/block) return r<q.r;
return l/block<q.l/block;
}
}query[MAXN]; long long gcd(long long a,long long b){
if(b==) return a;
return gcd(b,a%b);
} int seq[MAXN];
long long cnt[MAXN],ansx[MAXN],ansy[MAXN];
void insert(long long &res,int a){
res-=cnt[a]*cnt[a];
++cnt[a];
res+=cnt[a]*cnt[a];
}
void remove(long long &res,int a){
res-=cnt[a]*cnt[a];
--cnt[a];
res+=cnt[a]*cnt[a];
}
int main(){
int n,m;
scanf("%d%d",&n,&m);
block=sqrt(n);
for(int i=; i<=n; ++i) scanf("%d",seq+i);
for(int i=; i<m; ++i){
query[i].i=i;
scanf("%d%d",&query[i].l,&query[i].r);
}
sort(query,query+m);
int l=,r=;
++cnt[seq[]];
long long res=;
for(int i=; i<m; ++i){
if(query[i].l==query[i].r){
ansx[query[i].i]=; ansy[query[i].i]=;
continue;
}
while(l<query[i].l){
remove(res,seq[l]);
++l;
}
while(l>query[i].l){
--l;
insert(res,seq[l]);
}
while(r<query[i].r){
++r;
insert(res,seq[r]);
}
while(r>query[i].r){
remove(res,seq[r]);
--r;
}
long long a=res-(query[i].r-query[i].l+),b=(query[i].r-query[i].l+1LL)*(query[i].r-query[i].l),c=gcd(b,a);
ansx[query[i].i]=a/c; ansy[query[i].i]=b/c;
}
for(int i=; i<m; ++i) printf("%lld/%lld\n",ansx[i],ansy[i]);
return ;
}
BZOJ2038 [2009国家集训队]小Z的袜子(hose)(莫队算法)的更多相关文章
- BZOJ2038: [2009国家集训队]小Z的袜子(hose) -- 莫队算法 ,,分块
2038: [2009国家集训队]小Z的袜子(hose) Time Limit: 20 Sec Memory Limit: 259 MBSubmit: 3577 Solved: 1652[Subm ...
- [BZOJ2038] [2009国家集训队]小Z的袜子(hose) 莫队算法练习
2038: [2009国家集训队]小Z的袜子(hose) Time Limit: 20 Sec Memory Limit: 259 MBSubmit: 10299 Solved: 4685[Sub ...
- [bzoj2038][2009国家集训队]小Z的袜子(hose)——莫队算法
Brief Description 给定一个序列,您需要处理m个询问,每个询问形如[l,r],您需要回答在区间[l,r]中任意选取两个数相同的概率. Algorithm Design 莫队算法入门题目 ...
- BZOJ2038: [2009国家集训队]小Z的袜子(hose) 莫队算法
要使用莫队算法前提 ,已知[l,r]的答案,要能在logn或者O(1)的时间得到[l+1,r],[l-1,r],[l,r-1],[l,r+1],适用于一类不修改的查询 优美的替代品——分块将n个数分成 ...
- BZOJ 2038: [2009国家集训队]小Z的袜子(hose) [莫队算法]【学习笔记】
2038: [2009国家集训队]小Z的袜子(hose) Time Limit: 20 Sec Memory Limit: 259 MBSubmit: 7687 Solved: 3516[Subm ...
- 【bzoj2038】[2009国家集训队]小Z的袜子(hose) 莫队算法
原文地址:http://www.cnblogs.com/GXZlegend/p/6803860.html 题目描述 作为一个生活散漫的人,小Z每天早上都要耗费很久从一堆五颜六色的袜子中找出一双来穿.终 ...
- bzoj2038: [2009国家集训队]小Z的袜子(hose) [莫队]
Description 作为一个生活散漫的人,小Z每天早上都要耗费很久从一堆五颜六色的袜子中找出一双来穿.终于有一天,小Z再也无法忍受这恼人的找袜子过程,于是他决定听天由命……具体来说,小Z把这N只袜 ...
- BZOJ2038[2009国家集训队]小Z的袜子(hose)——莫队
题目描述 作为一个生活散漫的人,小Z每天早上都要耗费很久从一堆五颜六色的袜子中找出一双来穿.终于有一天,小Z再也无法忍受这恼人的找袜子过程,于是他决定听天由命……具体来说,小Z把这N只袜子从1到N编号 ...
- Bzoj 2038: [2009国家集训队]小Z的袜子(hose) 莫队,分块,暴力
2038: [2009国家集训队]小Z的袜子(hose) Time Limit: 20 Sec Memory Limit: 259 MBSubmit: 5763 Solved: 2660[Subm ...
- BZOJ 2038: [2009国家集训队]小Z的袜子(hose) ( 莫队 )
莫队..先按sqrt(n)分块, 然后按块的顺序对询问排序, 同块就按右端点排序. 然后就按排序后的顺序暴力求解即可. 时间复杂度O(n1.5) --------------------------- ...
随机推荐
- 易语言.开源(vip视频播放器源码)
下载链接:https://pan.baidu.com/s/1ta1Ig3LOiOka-kr5xB18kw
- codeforces Registration system
Registration system A new e-mail service "Berlandesk" is going to be opened in Berland in ...
- Opencv3.2.0安装包
这个资源是Opencv3.2.0安装包,包括Windows软件包,Android软件包,IOS软件包,还有opencv的源代码:需要的下载吧. 点击下载
- 第一次软件工程作业补充plus
一.代码的coding地址:coding地址. 二.<构建之法>读后问题以及感言(补充): 1.对于7.3MSF团队模型,7.2.6保持敏捷,预期和适应变化,中的"我们是预期变化 ...
- 从 C10K 到 C500K
国外的 Urban Airship 公司的工程师在其官方网志上发文章介绍他们在产品环境中做到 50 万并发客户端,Java + Pure NIO 的实现,最近又有文章介绍针对 Linux Kernel ...
- 【bzoj3585/bzoj3339】mex/Rmq Problem 莫队算法+分块
原文地址:http://www.cnblogs.com/GXZlegend/p/6805283.html 题目描述 有一个长度为n的数组{a1,a2,...,an}.m次询问,每次询问一个区间内最小没 ...
- HTML5 localStorage与document.domain设置问题
localStorage的写入和读取,不能跨子域,否则在一些移动端浏览器上,会出现读取不到的情况. 最近开发一个移动端的播放记录功能,在pc端和android版的chrome测试很顺利通过了,但后来进 ...
- [CF932D]Tree
题目大意:两种操作: $1\;u\;w:$把下一个点挂在$u$下,权值为$w$. $2\;u\;w:$询问从$u$开始的序列的最长长度.序列为从$u$开始的祖先序列中的不严格上升序列 题解:可以把一个 ...
- spring in action 学习笔记六:bean在不同情况下的默认id号或者将名字
bean如果不知名id是什么它一般都有一个id或者讲名字. 第一种情况:组件扫描的情况:默认的id号或者bean的name是类名的首字母小写. 代码如下: package com.qls.beanli ...
- 百度AI开放平台 UNIT平台开发在线客服 借助百度的人工智能如何开发一个在线客服系统
这段时间在研究一些人工智能的产品,对比了国内几家做人工智能在线客服的,有些接口是要收费的,有些是免费的,但是做了很多限制,比如每天调用的接口次数限制是100次.后来就找到了百度的AI,大家也知道,目前 ...