Card Collector(期望+min-max容斥)
Card Collector(期望+min-max容斥)
woc居然在毫不知情的情况下写出一个min-max容斥
题意
买一包方便面有几率附赠一张卡,有\(n\)种卡,每种卡出现的概率是\(p_i\),保证\(\Sigma p_i \le 1\),集齐所有种类卡牌期望买多少包方便面?
解法
看次题解前,你必须要理解当只有一种卡,他出现的概率是\(p\),那么我期望购买$\frac 1 p $包方便面就可以获得这种卡。
否则请你右上角,因为博主不会解释...
唯一的解释就是:
(期望购买包数)\(\times\)(每包里面出现一张的概率)=(张数)
所以把概率除过去就好了...
我们想把所有\(\frac 1 p\)加起来,发现这样的错误的,原因是我们忽略了每次抽卡牌的时候可能抽到别的卡牌,把所有$\frac 1 p $加起来相当于必须抽到一张卡牌后才能抽到另一张,这样是不对的。
但是这样启示我们可以容斥,根据一些显然的概率原理(如果你不承认就右上角),出现\(1\)或者\(2\)号卡牌的概率是\(p_1+p_2\)。那么,\(\frac 1 {p_1+p_2}\)的意思是,我抽到一张\(1\)或者\(2\)的期望次数。那么,抽到一张\(1\)和一张\(2\)的期望次数就是
\]
为什么我们的期望里要减去\(1/(p_1+p_2)\),因为我抽\(1\)的时候可能抽出\(2\),会省下一点期望,这个期望具体的值就是\(1/(p_1+p_2)\)(看不懂就右上角)。
所以我们就可以愉快地容斥了
\]
实际上,这个式子就是\(min-max\)容斥。
//@winlere
#include<iostream>
#include<cstdio>
#include<cstring>
#include<cmath>
#include<algorithm>
using namespace std;
const int maxn=25;
int num[maxn],n;
long double ans;
long double p[maxn];
int main(){
#ifndef ONLINE_JUDGE
freopen("in.in","r",stdin);
freopen("out.out","w",stdout);
#endif
num[1]=1;
for(register int t=2;t<maxn;++t)
num[t]=num[t-1]<<1;
while(~scanf("%ds",&n)){
for(register int t=1;t<=n;++t)
scanf("%Lf",&p[t]);
for(register int t=1,edd=1<<n;t<edd;++t){
long double delt=0;
register int cnt=0;
for(register int i=1;i<=n;++i)
if(t&num[i]){
delt+=p[i];
++cnt;
}
if(cnt&1) ans+=1.0/delt;
else ans-=1.0/delt;
}
printf("%.4Lf\n",ans);
ans=0;
}
return 0;
}
Card Collector(期望+min-max容斥)的更多相关文章
- $HDU$ 4336 $Card\ Collector$ 概率$dp$/$Min-Max$容斥
正解:期望 解题报告: 传送门! 先放下题意,,,已知有总共有$n$张卡片,每次有$p_i$的概率抽到第$i$张卡,求买所有卡的期望次数 $umm$看到期望自然而然想$dp$? 再一看,哇,$n\le ...
- HDU 4336 Card Collector (期望DP+状态压缩 或者 状态压缩+容斥)
题意:有N(1<=N<=20)张卡片,每包中含有这些卡片的概率,每包至多一张卡片,可能没有卡片.求需要买多少包才能拿到所以的N张卡片,求次数的期望. 析:期望DP,是很容易看出来的,然后由 ...
- HDU4336 Card Collector(期望 状压 MinMax容斥)
题意 题目链接 \(N\)个物品,每次得到第\(i\)个物品的概率为\(p_i\),而且有可能什么也得不到,问期望多少次能收集到全部\(N\)个物品 Sol 最直观的做法是直接状压,设\(f[sta] ...
- P4707-重返现世【dp,数学期望,扩展min-max容斥】
正题 题目链接:https://www.luogu.com.cn/problem/P4707 题目大意 \(n\)个物品,每次生成一种物品,第\(i\)个被生成的概率是\(\frac{p_i}{m}\ ...
- LOJ2542. 「PKUWC2018」随机游走【概率期望DP+Min-Max容斥(最值反演)】
题面 思路 我们可以把到每个点的期望步数算出来取max?但是直接算显然是不行的 那就可以用Min-Max来容斥一下 设\(g_{s}\)是从x到s中任意一个点的最小步数 设\(f_{s}\)是从x到s ...
- HDU 4336 Card Collector 期望dp+状压
题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=4336 Card Collector Time Limit: 2000/1000 MS (Java/O ...
- UOJ449. 【集训队作业2018】喂鸽子 [概率期望,min-max容斥,生成函数]
UOJ 思路 由于最近养成的不写代码的习惯(其实就是懒),以下式子不保证正确性. 上来我们先甩一个min-max容斥.由于每只鸽子是一样的,这只贡献了\(O(n)\)的复杂度. 现在的问题转化为对于\ ...
- hdu 4336 Card Collector(期望 dp 状态压缩)
Problem Description In your childhood, people in the famous novel Water Margin, you will win an amaz ...
- [Codeforces235D]Graph Game——概率与期望+基环树+容斥
题目链接: Codeforces235D 题目大意:给出一棵基环树,并给出如下点分治过程,求点数总遍历次数的期望. 点分治过程: 1.遍历当前联通块内所有点 2.随机选择联通块内一个点删除掉 3.对新 ...
随机推荐
- 2017.9.15 postgresql批量插入造成冲突后执行更新
参考来自:https://stackoverflow.com/questions/40647600/postgresql-multi-value-upserts/46233907#46233907 1 ...
- Windows远程CentOS桌面
Windows远程CentOS桌面 1.VNC 服务器配置 1) 安装vncserver yum install -y vnc-server 2) 修改配置 vi /etc/sysconfig/vnc ...
- 使用RAP搭建前端Mock Server
转载自:<前后端分离--构建前端Mock Server--windows部署rap>http://www.cnblogs.com/dothin/p/5361883.html mock:模拟 ...
- Git版本管理
1.显示当前工作目录 pwd 2.把当前目录初始化为git可以管理的仓库 git init 3.把文件添加到仓库 git add xxx.txt 4.告诉git,把文件提交到仓库 .-m后面输入的是本 ...
- react-native AsyncStorage 数据持久化方案
1,AsyncStorage介绍 AsyncStorage 是一个简单的.异步的.持久化的 Key-Value 存储系统,它对于 App 来说是全局性的.它用来代替 LocalStorage. 由于它 ...
- Vue 事件修饰符 阻止默认事件
阻止默认事件: <a v-on:click.prevent="doThat"></a>
- TCP/IP详解 卷一(第十三章 IGMP:Internet组管理协议)
本章将介绍用于支持主机和路由器进行多播的Internet组管理协议(IGMP) 它让一个物理网络上的所有系统知道主机当前所在的多播组.多播路由器需要这些信息以便知道多播数据报应该向那些接口转发. 跟I ...
- 网络配置ipconfig /release、ipconfig /renew
换了一个工位,换了一根网线,网络就不能用了,网线插在别人电脑上能用,我很是纳闷,这是哪里出问题了呢?通过进入CMD命令操作框,输入以下命令,重新分配IP成功解决问题,耶 ping: ping 的作用是 ...
- 为什么返回的数据前面有callback? ashx/json.ashx?的后面加 callback=? 起什么作用 js url?callback=xxx xxx的介绍 ajax 跨域请求时url参数添加callback=?会实现跨域问题
为什么返回的数据前面有callback? 这是一个同学出现的问题,问到了我. 应该是这样的: 但问题是这样的: 我看了所请求的格式和后台要求的也是相同的.而且我也是这种做法,为什么他的就不行呢? ...
- 【0】按照Django官网:实现第一个django app 安装必要的工具/模块
1.环境配置: (1)Install Setuptools¶ To install Python packages on your computer, Setuptools is needed. Do ...