题目链接:

https://vjudge.net/problem/POJ-2112

题目大意:

k个机器,每个机器最多服务m头牛。

c头牛,每个牛需要1台机器来服务。

告诉你牛与机器每个之间的直接距离。

问:让所有的牛都被服务的情况下,使走的最远的牛的距离最短,求这个距离。

解题思路:

二分枚举距离,实际距离满足当前枚举距离限制的可以加入这条边。枚举的距离中符合条件的最小值就是答案。

建图过程:

一个超级汇点,每个机器和汇点的容量都是m。

一个超级源点,和每头牛的容量都是1.

机器i与牛j之间的距离如果小于等于当前枚举值mid,连接i,j,容量1.

这样最大流的意义就是能够服务的牛最多是多少,如果最大流等于牛的总数c,表示当前枚举值mid符合条件,同时说明mid值还可能可以更小,更新二分右边界r = mid .(最终答案也是r不是mid)

如果小于牛的总数,说明mid偏小,更新二分左边界,l = mid + 1.

机器与牛之间的最短距离可以用floyd预处理出来。

 #include<iostream>
#include<vector>
#include<cstring>
#include<queue>
using namespace std;
const int maxn = + ;
const int INF = 0x3f3f3f3f;
struct edge
{
int u, v, c, f;
edge(int u, int v, int c, int f):u(u), v(v), c(c), f(f){}
};
vector<edge>e;
vector<int>G[maxn];
int a[maxn], p[maxn];
void init(int n)
{
e.clear();
for(int i = ; i <= n; i++)G[i].clear();
}
void addedge(int u, int v, int c)
{
//cout<<u<<" "<<v<<" "<<c<<endl;
e.push_back(edge(u, v, c, ));
e.push_back(edge(v, u, , ));
int m = e.size();
G[u].push_back(m - );
G[v].push_back(m - );
}
int Maxflow(int s, int t)
{
int flow = ;
for(;;)
{
memset(a, , sizeof(a));
queue<int>q;
q.push(s);
a[s] =INF;
while(!q.empty())
{
int u = q.front();
q.pop();
for(int i = ; i < G[u].size(); i++)
{
edge& now = e[G[u][i]];
int v = now.v;
if(!a[v] && now.c > now.f)//还未流经并且边还有容量
{
p[v] = G[u][i];
a[v] = min(a[u], now.c - now.f);
q.push(v);
}
}
if(a[t])break;//已经到达汇点
}
if(!a[t])break;//已经没有增广路
for(int u = t; u != s; u = e[p[u]].u)
{
e[p[u]].f += a[t];
e[p[u] ^ ].f -= a[t];
}
flow += a[t];
}
return flow;
}
int k, c, m, n;
int s, t;
int Map[maxn][maxn];
void build_map(int Maxdist_min)
{
init(n);//每次构建容量网络清空边
//超级源点s和所有牛建边,权值为1
for(int i = k + ; i <= n; i++)addedge(s, i, );
//所有挤奶机和超级汇点建边,权值为m(也就是一台挤奶机可供牛的最大数目)
for(int i = ; i <= k; i++)addedge(i, t, m);
for(int i = k + ; i <= n; i++)//牛的编号,后c个
{
for(int j = ; j <= k; j++)//挤奶机编号,前k个
{
if(Map[i][j] <= Maxdist_min)//小于最大距离,那么可以直达
addedge(i, j, );//牛和挤奶机可以配对
}
}
}
int main()
{
cin >> k >> c >> m;
n = k + c;
for(int i = ; i <= n; i++)//前k个点为挤奶机,后c个点为牛
{
for(int j = ; j <= n; j++)
{
cin >> Map[i][j];
if(Map[i][j] == )Map[i][j] = INF;
}
}
//Floyd求最短路
for(int k = ; k <= n; k++)
{
for(int i = ; i <= n; i++)
{
for(int j = ; j <= n; j++)
{
Map[i][j] = min(Map[i][j], Map[i][k] + Map[k][j]);
}
}
}
int l = , r = , mid;//此处最大距离不能是200,题目说的200只是一条边,可能要走很多条边
s = , t = n + ;
while(l < r)
{
mid = (l + r) / ;
//cout<<mid<<endl;
build_map(mid);
if(Maxflow(s, t) >= c)//说明所有的牛已经到达,最大距离可以更小
r = mid;
else l = mid + ;
}
cout<<r<<endl;//最大距离最小,这里的最大距离是r不是mid,因为最后一次循环的时候可能只更新mid和l,没有更新r
}

POJ2112 Optimal Milking---二分+Floyd+网络流的更多相关文章

  1. [USACO2003][poj2112]Optimal Milking(floyd+二分+二分图多重匹配)

    http://poj.org/problem?id=2112 题意: 有K个挤奶器,C头奶牛,每个挤奶器最多能给M头奶牛挤奶. 每个挤奶器和奶牛之间都有一定距离. 求使C头奶牛头奶牛需要走的路程的最大 ...

  2. POJ2112 Optimal Milking —— 二分图多重匹配/最大流 + 二分

    题目链接:https://vjudge.net/problem/POJ-2112 Optimal Milking Time Limit: 2000MS   Memory Limit: 30000K T ...

  3. POJ 2112 Optimal Milking (二分 + floyd + 网络流)

    POJ 2112 Optimal Milking 链接:http://poj.org/problem?id=2112 题意:农场主John 将他的K(1≤K≤30)个挤奶器运到牧场,在那里有C(1≤C ...

  4. POJ2112 Optimal Milking 【最大流+二分】

    Optimal Milking Time Limit: 2000MS   Memory Limit: 30000K Total Submissions: 12482   Accepted: 4508 ...

  5. POJ2112 Optimal Milking (网络流)(Dinic)

                                             Optimal Milking Time Limit: 2000MS   Memory Limit: 30000K T ...

  6. POJ2112 Optimal Milking

    Optimal Milking Time Limit: 2000MS   Memory Limit: 30000K Total Submissions: 17811   Accepted: 6368 ...

  7. POJ-2112 Optimal Milking(floyd+最大流+二分)

    题目大意: 有k个挤奶器,在牧场里有c头奶牛,每个挤奶器可以满足m个奶牛,奶牛和挤奶器都可以看成是实体,现在给出两个实体之间的距离,如果没有路径相连,则为0,现在问你在所有方案里面,这c头奶牛需要走的 ...

  8. POJ 2112 Optimal Milking(Floyd+多重匹配+二分枚举)

    题意:有K台挤奶机,C头奶牛,每个挤奶机每天只能为M头奶牛服务,下面给的K+C的矩阵,是形容相互之间的距离,求出来走最远的那头奶牛要走多远   输入数据: 第一行三个数 K, C, M  接下来是   ...

  9. poj2112 Optimal Milking --- 最大流量,二分法

    nx一个挤奶器,ny奶牛,每个挤奶罐为最m奶牛使用. 现在给nx+ny在矩阵之间的距离.要求使所有奶牛挤奶到挤奶正在旅程,最小的个体奶牛步行距离的最大值. 始感觉这个类似二分图匹配,不同之处在于挤奶器 ...

随机推荐

  1. 通过增删改查对比Array,Map,Set,Object的使用成本和实现方式

    1.Array 和 Map 对比 { // array and map 增 查 改 删 let map = new Map(); let arr = []; // 增 map.set('a', 1); ...

  2. 2010辽宁省赛E(Bellman_Ford最短路,状态压缩DP【三进制】)

    #include<bits/stdc++.h>using namespace std;const int inf=0x3f3f3f3f;struct node{    int v,z,d, ...

  3. 气泡提示 纯CSS

    tooltip(气泡提示) 依赖 脚本文件:CalvinTip.js 样式文件:toolTip.css 参数 elems HTMLNode 必须 气泡提示的元素 options Object 可选 多 ...

  4. iOS通过SocketRocket实现websocket的即时聊天

    之前公司的即时聊天用的是常轮循,一直都觉得很不科学,最近后台说配置好了socket服务器,我高兴地准备用asyncsocket,但是告诉我要用websocket,基于HTML5的,HTML5中提出了一 ...

  5. Object类、常用API

    Object类.常用API Object类.常用API Object类.常用API Object类.常用API Object类.常用API Object类.常用API

  6. AT2582 Mirrored

    传送门 智障爆搜题 可以发现题目给出的式子可以移项 然后就是\(rev(N)-N=D\) 然后假设\(N=a_1*10^{n-1}+a_2*10^{n-2}+...+a_{n}\) 那么\(rev(N ...

  7. day22作业详解

    1.面向对象作业1 2.作业详解 点击查看详细内容 #1. class Li(object): def func1(self): print('in func1') obj = Li() obj.fu ...

  8. HTTP的学习记录3--HTTPS和HTTP

    一开始我所知道的只有HTTPS比HTTP更加安全,而且很多网站,如百度谷歌之流已经都是HTTPS了,博客园也是,你可以看到上方我们链接上那个绿色的小锁和绿色的安全二字. 另外吐槽一句,绿色还真是有趣, ...

  9. java——String、StringBuffer、StringBuilder、包装类、单双引号

    String: String是一个特殊的类,被定义为final类型,为字符串常量,同样的字符串在常量池中不能重复. 但是由于使用关键字new创建新的字符串,java会在对中分配新的空间,这样即使字符串 ...

  10. count(1), count(*), count(col) 的区别

    1.count(1)和count(*)都是统计表的总行数,两者执行结果相同.表没有主键或者唯一键索引时,两者都进行全表扫描:表上主键或者唯一键索引时,使用主键或者唯一键索引. 2.count(col) ...