tarjan算法求LCA

LCA(Least Common Ancestors)的意思是最近公共祖先,即在一棵树中,找出两节点最近的公共祖先。

这里我们使用tarjan算法离线算法解决这个问题。

离线算法,是指首先读入所有的询问(求一次LCA叫做一次询问),然后重新组织查询处理顺序以便得到更高效的处理方法。Tarjan算法是一个常见的用于解决LCA问题的离线算法,它结合了深度优先遍历和并查集,整个算法为线性处理时间。

总思路就是每进入一个节点u的深搜,就把整个树的一部分看作以节点u为根节点的小树,再搜索其他的节点。每搜索完一个点后,如果该点和另一个已搜索完点为需要查询LCA的点,则这两点的LCA为另一个点的现在的祖先。

1.先建立两个链表,一个为树的各条边,另一个是需要查询最近公共祖先的两节点。

2.建好后,从根节点开始进行一遍深搜。

3.先把该节点u的father设为他自己(也就是只看大树的一部分,把那一部分看作是一棵树),搜索与此节点相连的所有点v,如果点v没被搜索过,则进入点v的深搜,深搜完后把点v的father设为点u。

4.深搜完一点u后,开始判断节点u与另一节点v是否满足求LCA的条件,满足则将结果存入数组中。

5.搜索完所有点,自动退出初始的第一个深搜,输出结果。

如上图,根据实现算法可以看出,只有当某一棵子树全部遍历处理完成后,才将该子树的根节点标记为有颜色(初始化是白色),假设程序按上面的树形结构进行遍历,首先从节点1开始,然后递归处理根为2的子树,当子树2处理完毕后,节点2, 5, 6均为红色;接着要回溯处理3子树,首先被染色的是节点7(因为节点7作为叶子不用深搜,直接处理),接着节点7就会查看所有询问(7, x)的节点对,假如存在(7, 5),因为节点5已经被染黑,所以就可以断定(7, 5)的最近公共祖先就是find(5),即节点1(因为2子树处理完毕后,子树2和节点1返回了合并后的树的根1,此时树根的祖先的值就是1)。

代码实现:

 #include<cstdio>
#define N 420000
struct hehe{
int next;
int to;
int lca;
};
hehe edge[N];//树的链表
hehe qedge[N];//需要查询LCA的两节点的链表
int n,m,p,x,y;
int num_edge,num_qedge,head[N],qhead[N];
int father[N];
int visit[N];//判断是否被找过
void add_edge(int from,int to){//建立树的链表
edge[++num_edge].next=head[from];
edge[num_edge].to=to;
head[from]=num_edge;
}
void add_qedge(int from,int to){//建立需要查询LCA的两节点的链表
qedge[++num_qedge].next=qhead[from];
qedge[num_qedge].to=to;
qhead[from]=num_qedge;
}
int find(int z){//找爹函数
if(father[z]!=z)
father[z]=find(father[z]);
return father[z];
}
int dfs(int x){//把整棵树的一部分看作以节点x为根节点的小树
father[x]=x;//由于节点x被看作是根节点,所以把x的father设为它自己
visit[x]=;//标记为已被搜索过
for(int k=head[x];k;k=edge[k].next)//遍历所有与x相连的节点
if(!visit[edge[k].to]){//若未被搜索
dfs(edge[k].to);//以该节点为根节点搞小树
father[edge[k].to]=x;//把x的孩子节点的father重新设为x
}
for(int k=qhead[x];k;k=qedge[k].next)//搜索包含节点x的所有询问
if(visit[qedge[k].to]){//如果另一节点已被搜索过
qedge[k].lca=find(qedge[k].to);//把另一节点的祖先设为这两个节点的最近公共祖先
if(k%)//由于将每一组查询变为两组,所以2n-1和2n的结果是一样的
qedge[k+].lca=qedge[k].lca;
else
qedge[k-].lca=qedge[k].lca;
}
}
int main(){
scanf("%d%d%d",&n,&m,&p);//输入节点数,查询数和根节点
for(int i=;i<n;++i){
scanf("%d%d",&x,&y);//输入每条边
add_edge(x,y);
add_edge(y,x);
}
for(int i=;i<=m;++i){
scanf("%d%d",&x,&y);//输入每次查询,考虑(u,v)时若查找到u但v未被查找,所以将(u,v)(v,u)全部记录
add_qedge(x,y);
add_qedge(y,x);
}
dfs(p);//进入以p为根节点的树的深搜
for(int i=;i<=m;i++)
printf("%d ",qedge[i*].lca);//两者结果一样,只输出一组即可
return ;
}

时间复杂度:O(n+m)。

离线算法。

tarjan算法求LCA的更多相关文章

  1. Tarjan 算法求 LCA / Tarjan 算法求强连通分量

    [时光蒸汽喵带你做专题]最近公共祖先 LCA (Lowest Common Ancestors)_哔哩哔哩 (゜-゜)つロ 干杯~-bilibili tarjan LCA - YouTube Tarj ...

  2. POJ 1986 Distance Queries (Tarjan算法求最近公共祖先)

    题目链接 Description Farmer John's cows refused to run in his marathon since he chose a path much too lo ...

  3. ZOJ Problem - 2588 Burning Bridges tarjan算法求割边

    题意:求无向图的割边. 思路:tarjan算法求割边,访问到一个点,如果这个点的low值比它的dfn值大,它就是割边,直接ans++(之所以可以直接ans++,是因为他与割点不同,每条边只访问了一遍) ...

  4. HDU 1269 迷宫城堡 tarjan算法求强连通分量

    基础模板题,应用tarjan算法求有向图的强连通分量,tarjan在此处的实现方法为:使用栈储存已经访问过的点,当访问的点离开dfs的时候,判断这个点的low值是否等于它的出生日期dfn值,如果相等, ...

  5. 【HDOJ2586】【Tarjan离线求LCA】

    http://acm.hdu.edu.cn/showproblem.php?pid=2586 How far away ? Time Limit: 2000/1000 MS (Java/Others) ...

  6. [Tarjan系列] Tarjan算法求无向图的双连通分量

    这篇介绍如何用Tarjan算法求Double Connected Component,即双连通分量. 双联通分量包括点双连通分量v-DCC和边连通分量e-DCC. 若一张无向连通图不存在割点,则称它为 ...

  7. Tarjan算法求有向图强连通分量并缩点

    // Tarjan算法求有向图强连通分量并缩点 #include<iostream> #include<cstdio> #include<cstring> #inc ...

  8. tarjan算法求无向图的桥、边双连通分量并缩点

    // tarjan算法求无向图的桥.边双连通分量并缩点 #include<iostream> #include<cstdio> #include<cstring> ...

  9. [学习笔记] Tarjan算法求桥和割点

    在之前的博客中我们已经介绍了如何用Tarjan算法求有向图中的强连通分量,而今天我们要谈的Tarjan求桥.割点,也是和上篇有博客有类似之处的. 关于桥和割点: 桥:在一个有向图中,如果删去一条边,而 ...

随机推荐

  1. 剑指offer52 构建乘积数组

    这个题的错误和c++ primier中名字的作用域例子相似.只是这里将int换成了vecto<int>这种形式. class Solution { public: vector<in ...

  2. Bean的初始化和销毁

    在我们实际开发的时候,经常会遇到在Bean在使用之前或者之后做些必要的操作,Spring对Bean的生命周期的操作提供了支持.在使用Java配置和注解配置下提供如下两种方式.    1.Java配置方 ...

  3. 矩阵——特征向量(Eigenvector)

    原文链接 矩阵的基础内容以前已经提到,今天我们来看看矩阵的重要特性——特征向量. 矩阵是个非常抽象的数学概念,很多人到了这里往往望而生畏.比如矩阵的乘法为什么有这样奇怪的定义?实际上是由工程实际需要定 ...

  4. git移除某文件夹的版本控制

    thinkphp框架,Apps/Runtime下目录移出版本控制. git rm -r -n --cached  */Runtime/\*      //-n:加上这个参数,执行命令时,是不会删除任何 ...

  5. React后台管理系统-订单管理

    1.订单管理页面和商品管理页面类似,都是一个搜索组件+列表组件 2.搜索框search组件 import React from 'react';   class ListSearch extends ...

  6. pytorch中词向量生成的原理

    pytorch中的词向量的使用 在pytorch我们使用nn.embedding进行词嵌入的工作. 具体用法就是: import torch word_to_ix={'hello':0,'world' ...

  7. ospf几种lsa

    ospf网络类型 1.点到点 点到点网段 2.广播网络 transit网段(至少有两台路由器的广播型网段) 3.NBMA transit网段 4.点到多点 ospf网段的类型(网段的类型只与网络的类型 ...

  8. 【文件处理】RandomAccessFile

    一,RandomAccessFile的用途: 使用RandomAccessFile的最大好处在于,一般的InputStream和OutputStream类对于文件都是顺序读取的,不能跳跃读取数据.而R ...

  9. android studio 首字母提示 设置 大小写敏感

    在使用Android studo 编写程序时, 刚开始,关键字提示 首字母 设置了 大小写敏感,小写字母只能提示小写字母开头的,大写字母只能提示大写字母开始的,比较麻烦,在网上搜了下,解决办法如下: ...

  10. 分别用反射、编程接口的方式创建DataFrame

    1.通过反射的方式 使用反射来推断包含特定数据类型的RDD,这种方式代码比较少,简洁,只要你会知道元数据信息时什么样,就可以使用了 代码如下: import org.apache.spark.sql. ...