题目链接

选课

题解

基础背包树形dp

#include<iostream>
#include<cstdio>
#include<cmath>
#include<cstring>
#include<algorithm>
#define LL long long int
#define Redge(u) for (int k = h[u],to; k; k = ed[k].nxt)
#define REP(i,n) for (int i = 1; i <= (n); i++)
#define BUG(s,n) for (int i = 1; i <= (n); i++) cout<<s[i]<<' '; puts("");
#define cls(s) memset(s,-0x3f3f3f3f,sizeof(s))
using namespace std;
const int maxn = 305,maxm = 100005,INF = 1000000000;
inline int read(){
int out = 0,flag = 1; char c = getchar();
while (c < 48 || c > 57){if (c == '-') flag = -1; c = getchar();}
while (c >= 48 && c <= 57){out = (out << 3) + (out << 1) + c - 48; c = getchar();}
return out * flag;
}
int h[maxn],ne = 1;
struct EDGE{int to,nxt;}ed[maxm];
inline void build(int u,int v){
ed[ne] = (EDGE){v,h[u]}; h[u] = ne++;
}
int n,m,val[maxn],f[maxn][maxn],fa[maxn];;
void dfs(int u){
f[u][0] = 0;
Redge(u){
dfs(to = ed[k].to);
for (int i = m; i >= 0; i--)
for (int j = i; j >= 0; j--)
f[u][i] = max(f[u][i],f[u][i - j] + f[to][j]);
}
if (u != 0)
for (int i = m; i; i--)
f[u][i] = f[u][i - 1] + val[u];
}
int main(){
cls(f);
n = read(); m = read();
REP(i,n){
fa[i] = read();
val[i] = read();
build(fa[i],i);
}
dfs(0);
int ans = 0;
for (int i = 0; i <= m; i++) ans = max(ans,f[0][i]);
printf("%d\n",ans);
return 0;
}

joyOI 选课 【树形dp + 背包dp】的更多相关文章

  1. 【bzoj1688】[USACO2005 Open]Disease Manangement 疾病管理 状态压缩dp+背包dp

    题目描述 Alas! A set of D (1 <= D <= 15) diseases (numbered 1..D) is running through the farm. Far ...

  2. BZOJ.4910.[SDOI2017]苹果树(树形依赖背包 DP 单调队列)

    BZOJ 洛谷 \(shadowice\)已经把他的思路说的很清楚了,可以先看一下会更好理解? 这篇主要是对\(Claris\)题解的简单说明.与\(shadowice\)的做法还是有差异的(比如并没 ...

  3. BZOJ.1017.[JSOI2008]魔兽地图(树形DP 背包DP)

    题目链接 树形DP,考虑子节点对父节点的贡献. 设f[x][i][j]表示当前为x,用i个x去合成上一层装备,花费为j的最大价值. 由子节点转移时 是一个分组背包,需要一个辅助数组g[i][j]表示前 ...

  4. BZOJ1017 [JSOI2008]魔兽地图DotR 【树形dp + 背包dp】

    题目链接 BZOJ1017 题解 orz hzwer 树形dp神题 设\(f[i][j][k]\)表示\(i\)号物品恰好花费\(k\)金币,并将\(j\)个物品贡献给父亲的合成时的最大收益 计算\( ...

  5. bzoj 1296: [SCOI2009]粉刷匠【dp+背包dp】

    参考:http://hzwer.com/3099.html 神题神题 其实只要知道思路就有点都不难-- 先对每一行dp,设g[i][j]为这行前i个格子粉刷了k次最大粉刷正确数,随便n^3一下就行 设 ...

  6. 树形DP和状压DP和背包DP

    树形DP和状压DP和背包DP 树形\(DP\)和状压\(DP\)虽然在\(NOIp\)中考的不多,但是仍然是一个比较常用的算法,因此学好这两个\(DP\)也是很重要的.而背包\(DP\)虽然以前考的次 ...

  7. hdu1561 The more, The Better (树形dp+背包)

    题目链接:http://acm.split.hdu.edu.cn/showproblem.php?pid=1561 思路:树形dp+01背包 //看注释可以懂 用vector建树更简单. 代码: #i ...

  8. HDU 4003 (树形DP+背包)

    题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=4003 题目大意:有K个机器人,走完树上的全部路径,每条路径有个消费.对于一个点,机器人可以出去再回来 ...

  9. ZOJ 3626(树形DP+背包+边cost)

    题目链接: http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemCode=3626 题目大意:树中取点.每过一条边有一定cost,且最后要回 ...

随机推荐

  1. Latex 使用笔记,取消目录

    不使用标准模板(如ieee或者acm的模板)的前提下: \usepackage{hyperref} \hypersetup{bookmarks={false}} 或者 \usepackage[book ...

  2. Ansible工作架构和原理

    特性 模块块化调用持定的模块,完成持定任务 有Paramiko,PyYAML,Jinja2(模板语言)三个关键模块 支持自定义模块 基于Python语法头现 部署简单,基于python和SSH(默认已 ...

  3. springMVC入门一

    一.准备工作 eclipse使用maven搭建项目,项目名称为HelloSpringMVC 二.搭建好的项目如下: 项目介绍:实现简单的helloworld 三.具体代码 controller类:He ...

  4. flask项目实战--论坛

    项目结构搭建 1:用pycharm创建flask bbs项目 2:分别创建config.py.exts.py.models.py.manage.py文件 创建一个apps包存放前台,后台,公共的模块 ...

  5. B1091 N-自守数 (15分)

    B1091 N-自守数 (15分) 如果某个数 \(K\)的平方乘以\(N\) 以后,结果的末尾几位数等于 \(K\),那么就称这个数为"\(N\)-自守数".例如 \(3×92 ...

  6. [Bzoj4408]神秘数(主席树)

    Description 一个可重复数字集合S的神秘数定义为最小的不能被S的子集的和表示的正整数. 例如S={1,1,1,4,13}, 1 = 1 2 = 1+1 3 = 1+1+1 4 = 4 5 = ...

  7. 机器学习笔记(一)—— 线性回归问题与Matlab求解

    给你多组数据集,例如给你很多房子的面积.房子距离市中心的距离.房子的价格,然后再给你一组面积. 距离,让你预测房价.这类问题称为回归问题. 回归问题(Regression) 是给定多个自变量.一个因变 ...

  8. Android 意图通用类 IntentUrl

    1.整体分析 1.1.源代码如下,可以直接Copy. public class IntentUtil { /** * 打开链接 * 根据设置判断是用那种方式打开 * * @param context ...

  9. Sql Server多种分页性能的比较

    一.前言 因为工作关系,遇到了非常大的数据量的分页问题,数据总共有8000万吧,这个显然不是简单的分页能够解决的,需要从多多方面考虑,从分表.分库等等.但是这个也让我考虑到了分页性能的问题,在不同数据 ...

  10. python 发送 get post请求

    GET请求: python2.7: import urllib,urllib2 url='http://192.168.199.1:8000/mainsugar/loginGET/' textmod ...