joyOI 选课 【树形dp + 背包dp】
题目链接
题解
基础背包树形dp
#include<iostream>
#include<cstdio>
#include<cmath>
#include<cstring>
#include<algorithm>
#define LL long long int
#define Redge(u) for (int k = h[u],to; k; k = ed[k].nxt)
#define REP(i,n) for (int i = 1; i <= (n); i++)
#define BUG(s,n) for (int i = 1; i <= (n); i++) cout<<s[i]<<' '; puts("");
#define cls(s) memset(s,-0x3f3f3f3f,sizeof(s))
using namespace std;
const int maxn = 305,maxm = 100005,INF = 1000000000;
inline int read(){
int out = 0,flag = 1; char c = getchar();
while (c < 48 || c > 57){if (c == '-') flag = -1; c = getchar();}
while (c >= 48 && c <= 57){out = (out << 3) + (out << 1) + c - 48; c = getchar();}
return out * flag;
}
int h[maxn],ne = 1;
struct EDGE{int to,nxt;}ed[maxm];
inline void build(int u,int v){
ed[ne] = (EDGE){v,h[u]}; h[u] = ne++;
}
int n,m,val[maxn],f[maxn][maxn],fa[maxn];;
void dfs(int u){
f[u][0] = 0;
Redge(u){
dfs(to = ed[k].to);
for (int i = m; i >= 0; i--)
for (int j = i; j >= 0; j--)
f[u][i] = max(f[u][i],f[u][i - j] + f[to][j]);
}
if (u != 0)
for (int i = m; i; i--)
f[u][i] = f[u][i - 1] + val[u];
}
int main(){
cls(f);
n = read(); m = read();
REP(i,n){
fa[i] = read();
val[i] = read();
build(fa[i],i);
}
dfs(0);
int ans = 0;
for (int i = 0; i <= m; i++) ans = max(ans,f[0][i]);
printf("%d\n",ans);
return 0;
}
joyOI 选课 【树形dp + 背包dp】的更多相关文章
- 【bzoj1688】[USACO2005 Open]Disease Manangement 疾病管理 状态压缩dp+背包dp
题目描述 Alas! A set of D (1 <= D <= 15) diseases (numbered 1..D) is running through the farm. Far ...
- BZOJ.4910.[SDOI2017]苹果树(树形依赖背包 DP 单调队列)
BZOJ 洛谷 \(shadowice\)已经把他的思路说的很清楚了,可以先看一下会更好理解? 这篇主要是对\(Claris\)题解的简单说明.与\(shadowice\)的做法还是有差异的(比如并没 ...
- BZOJ.1017.[JSOI2008]魔兽地图(树形DP 背包DP)
题目链接 树形DP,考虑子节点对父节点的贡献. 设f[x][i][j]表示当前为x,用i个x去合成上一层装备,花费为j的最大价值. 由子节点转移时 是一个分组背包,需要一个辅助数组g[i][j]表示前 ...
- BZOJ1017 [JSOI2008]魔兽地图DotR 【树形dp + 背包dp】
题目链接 BZOJ1017 题解 orz hzwer 树形dp神题 设\(f[i][j][k]\)表示\(i\)号物品恰好花费\(k\)金币,并将\(j\)个物品贡献给父亲的合成时的最大收益 计算\( ...
- bzoj 1296: [SCOI2009]粉刷匠【dp+背包dp】
参考:http://hzwer.com/3099.html 神题神题 其实只要知道思路就有点都不难-- 先对每一行dp,设g[i][j]为这行前i个格子粉刷了k次最大粉刷正确数,随便n^3一下就行 设 ...
- 树形DP和状压DP和背包DP
树形DP和状压DP和背包DP 树形\(DP\)和状压\(DP\)虽然在\(NOIp\)中考的不多,但是仍然是一个比较常用的算法,因此学好这两个\(DP\)也是很重要的.而背包\(DP\)虽然以前考的次 ...
- hdu1561 The more, The Better (树形dp+背包)
题目链接:http://acm.split.hdu.edu.cn/showproblem.php?pid=1561 思路:树形dp+01背包 //看注释可以懂 用vector建树更简单. 代码: #i ...
- HDU 4003 (树形DP+背包)
题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=4003 题目大意:有K个机器人,走完树上的全部路径,每条路径有个消费.对于一个点,机器人可以出去再回来 ...
- ZOJ 3626(树形DP+背包+边cost)
题目链接: http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemCode=3626 题目大意:树中取点.每过一条边有一定cost,且最后要回 ...
随机推荐
- 面向对象封装的web服务器
import socket import re import os import sys # 由于前面太繁琐,可以用类封装一下,也可以分几个模块 class HttpServer(object): d ...
- (二)、Python 基础
Python入门 一.第一句Python 在 /home/dev/ 目录下创建 hello.py 文件,内容如下: print "hello,world" 执行 hello.py ...
- linux面试集
shell:1.$# 和 $*之类的特殊变量 特殊变量列表 变量 含义 $0 当前脚本的文件名 $n 传递给脚本或函数的参数.n是一个数字,表示第几个参数.例如,第一个参数就是$1 $# 传递给脚本或 ...
- python 一些基础知识
Python 注释的原理: 原理:根据对象的引用计数器,对象创建会给对象一个引用计数器属性.如果该属性的值为0,那么该对象会被释放.创建一个字符串对象,但是没有任何引用,计数器为0. Python小整 ...
- 正则表达式re.S的用法
正则表达式re.S的用法 在Python的正则表达式中,有一个参数为re.S.它表示"."(不包含外侧双引号,下同)的作用扩展到整个字符串,包括"\n".看如下 ...
- BeanFactory和IOC控制反转
之前在看spring,看IOC实在是云里雾里,包括看AOP也是云里雾里的,后来重新学习Java Web,做了一个简单的web项目,再之后看了崔希凡老师的视频,Day27和Day28两天的内容,真的很有 ...
- &、|、~与&&、||、! 谬误
按位运算符(&.|.~)的操作是被默认为一个二进制的位序列,分别对其中的每个位进行操作. 逻辑运算符(&&.||.!)将操作数当成非真及假,非假及真.通常就是将0当成假,非0即 ...
- python 学习心得
多用类或是函数 我以前写的时候,不用函数,从头写到尾,后来,要改成函数,也是要花很多测试的时间,改的话还得一个调试,如果一开始就用函数的话,就能节省很多时间. 函数的功能尽可能的小 比如说像我用try ...
- Codeforces Round #460 (Div. 2).E 费马小定理+中国剩余定理
E. Congruence Equation time limit per test 3 seconds memory limit per test 256 megabytes input stand ...
- 笔记-python-多线程-深入-1
笔记-python-多线程-深入-1 1. 线程池 1.1. 线程池:控制同时存在的线程数量 threading没有线程池,只能自己控制线程数量. 基本有两种方式: 每间隔一段时间创建 ...