HDU 5917 Instability ramsey定理
http://acm.hdu.edu.cn/showproblem.php?pid=5917
即世界上任意6个人中,总有3个人相互认识,或互相皆不认识。
所以子集 >= 6的一定是合法的。
然后总的子集数目是2^n,减去不合法的,暴力枚举即可。
选了1个肯定不合法,2个也是,3个的话C(n, 3)枚举判断,C(n, 4), C(n, 5)
#include <bits/stdc++.h>
#define IOS ios::sync_with_stdio(false)
using namespace std;
#define inf (0x3f3f3f3f)
typedef long long int LL;
const int maxn = + ;
int e[maxn][maxn];
const LL MOD = 1e9 + ;
void add(LL &x, LL y) {
x = (x + MOD + y) % MOD;
}
bool ok(int i, int j, int k) {
return ((e[i][j] && e[j][k] && e[k][i]) || (!e[i][j] && !e[j][k] && !e[k][i]));
}
LL po[maxn];
int f;
void work() {
memset(e, false, sizeof e);
int n, m;
scanf("%d%d", &n, &m);
for (int i = ; i <= m; ++i) {
int u, v;
scanf("%d%d", &u, &v);
e[u][v] = e[v][u] = ;
}
LL ans = po[n];
add(ans, -(n + ));
add(ans, -(n * (n - ) / ));
LL t = ;
for (int i = ; i <= n; ++i) {
for (int j = i + ; j <= n; ++j) {
for (int k = j + ; k <= n; ++k) {
if (!ok(i, j, k)) t++;
}
}
}
for (int i = ; i <= n; ++i) {
for (int j = i + ; j <= n; ++j) {
for (int k = j + ; k <= n; ++k) {
for (int h = k + ; h <= n; ++h) {
if (!ok(i, j, k) && !ok(i, j, h) && !ok(i, k, h) && !ok(j, k, h)) t++;
}
}
}
}
for (int i = ; i <= n; ++i) {
for (int j = i + ; j <= n; ++j) {
for (int k = j + ; k <= n; ++k) {
for (int h = k + ; h <= n; ++h) {
for (int ha = h + ; ha <= n; ++ha) {
if (!ok(i, j, k) && !ok(i, j, h) && !ok(i, k, h) && !ok(j, k, h) && !ok(i, j, ha) &&
!ok(i, k, ha) && !ok(i, h, ha) && !ok(j, k, ha) && !ok(j, h, ha) &&
!ok(k, h, ha)) t++;
}
}
}
}
}
t %= MOD;
add(ans, -t);
printf("Case #%d: %lld\n", ++f, ans);
} int main() {
#ifdef local
freopen("data.txt", "r", stdin);
// freopen("data.txt", "w", stdout);
#endif
po[] = ;
for (int i = ; i <= maxn - ; ++i) {
po[i] = * po[i - ] % MOD;
}
int t;
scanf("%d", &t);
while (t--) work();
return ;
}
HDU 5917 Instability ramsey定理的更多相关文章
- 2017CCPC 网络选拔赛1003 Ramsey定理
Ramsey定理 任意6个人中,一定有三个人互为朋友,或者互相不是朋友. 证明 这里我就不证明了.下面链接有证明 鸽巢原理 Ramsey定理 AC代码 #include <stdio.h> ...
- 鸽巢原理及其扩展——Ramsey定理
第一部分:鸽巢原理 咕咕咕!!! 然鹅大家还是最熟悉我→ a数组:but 我也很重要 $:我好像也出现不少次 以上纯属灌水 文章简叙:鸽巢原理对初赛时的问题求解以及复赛的数论题目都有启发意义.直接的初 ...
- hdu 5917
题意:给你一个无向图,问图中有多少个符合条件的集合?条件为这个集合里面存在一个子集(大小>=3)为团或者都是孤立点.答案mod1e9+7: 根据 Ramsey定理,大于等于6个的集合,肯定存在一 ...
- HDU 5768 中国剩余定理
题目链接:Lucky7 题意:求在l和r范围内,满足能被7整除,而且不满足任意一组,x mod p[i] = a[i]的数的个数. 思路:容斥定理+中国剩余定理+快速乘法. (奇+ 偶-) #incl ...
- hdu 4704 同余定理+普通快速幂
此题往后推几步就可找到规律,从1开始,答案分别是1,2,4,8,16.... 这样就可以知道,题目的目的是求2^n%Mod的结果.....此时想,应该会想到快速幂...然后接着会发现,由于n的值过大, ...
- hdu 2973"YAPTCHA"(威尔逊定理)
传送门 题意: 给出自然数 n,计算出 Sn 的值,其中 [ x ]表示不大于 x 的最大整数. 题解: 根据威尔逊定理,如果 p 为素数,那么 (p-1)! ≡ -1(mod p),即 (p-1)! ...
- HDU 6158 笛卡尔定理+韦达定理
The Designer Time Limit: 8000/4000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)Tota ...
- HDU 6158 笛卡尔定理 几何
LINK 题意:一个大圆中内切两个圆,三个圆两两相切,再不断往上加新的相切圆,问加上的圆的面积和.具体切法看图 思路:笛卡尔定理: 若平面上四个半径为r1.r2.r3.r4的圆两两相切于不同点,则其半 ...
- HDU 3923 Invoker(polya定理+乘法逆元(扩展欧几里德+费马小定理))
Invoker Time Limit : 2000/1000ms (Java/Other) Memory Limit : 122768/62768K (Java/Other) Total Subm ...
随机推荐
- OpenStack、CloudStack、Eucalyptus和vCloud Director四大主流云平台怎么选?
软件产品开发公司Altoros Systems的IT基础设施设计师Vadim Truksha在美国<网络世界>上发表一篇文章,详细对比了CloudStack.Eucalyptus.vClo ...
- 机器学习:k-NN算法(也叫k近邻算法)
一.kNN算法基础 # kNN:k-Nearest Neighboors # 多用于解决分裂问题 1)特点: 是机器学习中唯一一个不需要训练过程的算法,可以别认为是没有模型的算法,也可以认为训练数据集 ...
- kvm虚拟机命令梳理
kvm虚拟机命令梳理 )查看KVM虚拟机配置文件及运行状态 KVM虚拟机默认配置文件位置: /etc/libvirt/qemu/ autostart目录是配置kvm虚拟机开机自启动目录. virsh命 ...
- 使用SVG + CSS实现动态霓虹灯文字效果
效果图: 原理:多个SVG描边动画使用不同的animation-delay即可! 对于一个形状SVG元素或文本SVG元素,可以使用stroke-dasharray来控制描边的间隔样式,并且可以用str ...
- hive-0.12.0-cdh5.1.0安装
先前条件: 要先安装好MYSQL 下载:hive-0.12.0-cdh5.1.0.tar.gz,并解压到安装目录 1. 添加环境变量 修改/etc/profile文件. #vi /etc/profil ...
- keras安装windows版
按照官网成功了.下面没有成功,貌似是 Anacode的问题 http://blog.csdn.net/hweiyi/article/details/70018317 http://blog.csdn. ...
- Struts2学习第八课 声明式异常处理
异常处理:exception-mapping元素 exception-mapping元素:配置当前的action的声明式异常处理 exception-mapping元素有两个属性: --excepti ...
- 19.Imagetragick 命令执行漏洞(CVE-2016–3714)
Imagetragick 命令执行漏洞(CVE-2016–3714) 漏洞简介: Imagetragick 命令执行漏洞在16年爆出来以后,wooyun上面也爆出了数个被该漏洞影响的大厂商,像腾讯, ...
- Spark 各个组件关系
Term Meaning Application User program built on Spark. Consists of a driver program and executors on ...
- 【linux-command not find解决方法 】
在linux下我们经常输入某些命令时经常出现提示说:command not find 首先 当出现 command not find时肯定是环境变量的问题,所以得修改环境变量.下面我也引用一下其他牛人 ...