CSP模拟50联测12 T2 赌神

题面与数据规模

Ps:超链接为衡水中学OJ。

思路

\(subtask2\):

由于\(x_i\)较小,考虑 dp。

假设一开始球的颜色为红和蓝,设 \(dp[i][j]\) 为剩 \(i\) 个红球,\(j\) 个蓝球时可获得的最大筹码数。

如果不同球掉落所获得的筹码不同,那么肯定会掉落最少筹码的那一堆球。所以保证各堆获得筹码相同时最优。

设蓝球堆放\(x\)个筹码,红球堆放\(y\)个筹码,则有:

\[dp[i][j]=2x*dp[i-1][j]=2y*dp[i][j-1] \ \ (n=2)
\]

易得每次把筹码投完比不投优。可得:

\[y=1-x\\
x*dp[i-1][j]=(1-x)dp[i][j-1]
\]

解 \(x\) 得:\(x=\frac{dp[i][j-1]}{dp[i-1][j]+dp[i][j-1]}\)

所以

\[dp[i][j]=2x*dp[i-1][j]=\frac{2dp[i][j-1]dp[i-1][j]}{dp[i][j-1]+dp[i-1][j]}
\]

\(subtask3\):

任然考虑 \(n=2\) 的情况,设 \(f[i][j]=\frac{dp[i][j]}{2^{i+j}}\)。

将 \(dp[i][j]\) 通过 \(subtask2\) 中的方程化简,得:

\[f[i][j]=\frac{f[i-1][j]f[i][j-1]}{f[i][j-1]+f[i-1][j]}
\]

同时取倒数,并裂项得:

\[\frac{1}{f[i][j]}=\frac{f[i][j-1]+f[i-1][j]}{f[i-1][j]f[i][j-1]}=\frac{1}{f[i][j-1]}+\frac{1}{f[i-1][j]}
\]

不难发现 \(f[i][j]\) 为在二维平面内由 \((0,0)\) 走向 \(i,j\) 的方案数,所以 \(f[i][j]=\dbinom{i+j}{i}\)。

\(subtask4\)

其实 \(n>2\) 时也有上述性质,那么 \(f(x_1,x_2,\cdots,x_n)\) 为 \(n\) 维平面内从 \((0,0,0,\cdots,0)\) 走到 \((x_1,x_2,\cdots,x_n)\) 的方案数。

那么\(f(x_1,x_2,\cdots,x_n)=\dbinom{\sum_{i=1}^n x_i}{x_n}*\dbinom{\sum_{i=1}^{n-1}x_i}{x_{n-1}}*\cdots*\dbinom{x_1}{x_1}\)。

展开,得:

\[f(x_1,x_2,\cdots,x_n)=\frac{\sum_{i=1}^n x_i}{x_n!\sum_{i=1}^{n-1}x_i}*\frac{\sum_{i=1}^{n-1} x_i}{x_{n-1}!\sum_{i=1}^{n-2}x_i}*\cdots*1
\]

发现每一项的分子与后一项的分母都存在共同部分,再次化简,得:

\[f(x_1,x_2,\cdots,x_n)=\frac{(\sum_{i=1}^n x_i)!}{\prod_{i=1}^n x_i!}
\]

于是答案为 \(\frac{n^{x_1+x_2+\cdots+x_n}}{f(x_1,x_2,\cdots,x_n)}\)。

CSP模拟50联测12 T2 赌神的更多相关文章

  1. AI赌神称霸德扑的秘密,刚刚被《科学》“曝光”了

    AI赌神称霸德扑的秘密,刚刚被<科学>“曝光”了 称霸德州扑克赛场的赌神Libratus,是今年最瞩目的AI明星之一. 刚刚,<科学>最新发布的预印版论文,详细解读了AI赌神背 ...

  2. csp模拟赛低级错误及反思

    \(csp\)模拟赛低级错误及反思. 1.没开\(longlong\). 反思:注意数据类型以及数据范围. 2.数组越界(前向星数组未开两倍,一题的数据范围应用到另一题上,要开两倍的写法为开两倍数组) ...

  3. 【NOIP2017提高组模拟12.10】神炎皇

    题目 神炎皇乌利亚很喜欢数对,他想找到神奇的数对. 对于一个整数对(a,b),若满足a+b<=n且a+b是ab的因子,则成为神奇的数对.请问这样的数对共有多少呢? 分析 设\(gcd(a,b)= ...

  4. 2019/11/12 CSP模拟赛&&考前小总结

    写在前面的总结 离联赛只有几天了,也马上就要回归文化课了. 有点舍不得,感觉自己的水平刚刚有点起色,却又要被抓回文化课教室了,真想在机房再赖几天啊. 像19/11/11那场的简单题,自己还是能敲出一些 ...

  5. 【JZOJ4919】【NOIP2017提高组模拟12.10】神炎皇

    题目描述 神炎皇乌利亚很喜欢数对,他想找到神奇的数对. 对于一个整数对(a,b),若满足a+b<=n且a+b是ab的因子,则成为神奇的数对.请问这样的数对共有多少呢? 数据范围 对于100%的数 ...

  6. 第十八次CSP认证游记 | 2019.12.15

    CSP认证的考试是Haogod介绍的,取得一定成绩之后能有机会参加CCSP的分赛区和全国决赛.这次来参加认证要感谢老师的奔走为我们申请学校的报销,虽然最终因为这不是比赛所以报名费和差旅费下不来,但是老 ...

  7. NOIP模拟17.10.12

    T1 临江仙 旧梦 题目背景 闻道故园花陌,今年奼紫嫣红.扬帆直渡水千重.东君何解意,送我一江风. 还是昔时庭院,终得醉卧花丛.残更惊醒月明中.流光如旧岁,多少梦成空. 题目描述 #define go ...

  8. Noip模拟50 2021.9.10

    已经好长时间没有考试不挂分的良好体验了... T1 第零题 开场数据结构,真爽 对于这道题首先要理解对于一条链从上向下和从下向上走复活次数相等 (这可能需要晚上躺在被窝里面脑摸几种情况的样例) 然后就 ...

  9. 2021.9.9考试总结[NOIP模拟50]

    T1 第零题 神秘结论:从一个点满体力到另一个点的复活次数与倒过来相同. 于是预处理出每个点向上走第$2^i$个死亡点的位置,具体实现可以倍增或二分. 每次询问先从两个点同时向上倍增,都转到离$LCA ...

  10. csp模拟69

    考试一眼看出$T3$原题,但是没做过,心态爆炸. 然后去看$T1$,迷之认为它是矩阵快速幂?推了一个小时,发现在转移过程中方案数并不均匀分布,然后就挂了. 决定先去看T3,只会$O(n\sqrt{n} ...

随机推荐

  1. Playwright 浏览器窗口最大化

    实现方式 浏览器启动时,加参数 args=['--start-maximized']: 创建上下文时,加参数 no_viewport=True. from playwright.sync_api im ...

  2. 【Homebrew】之相关命令问题合集及iOS真机调试包

    一.Homebrew更换国内镜像源(中科大.阿里.清华) Homebrew主要有四个部分组成: brew.homebrew-core .homebrew-bottles.homebrew-cask. ...

  3. 一文剖析TCP三次握手、四次挥手

    TCP三次握手四次挥手 问题 TCP建立连接为什么是三次握手,而不是两次或四次? TCP,名为传输控制协议,是一种可靠的传输层协议,IP协议号为6. 顺便说一句,原则上任何数据传输都无法确保绝对可靠, ...

  4. 探索一下 Enum 优化

    探索一下 Enum 优化 SV.Enums主要是探索如何让 enum 更高效 其中涉及的优化手段并非完全自创 很多内容参考于以下项目 NetEscapades.EnumGenerators FastE ...

  5. c++学习笔记(三):函数++

    函数PLUS 函数默认参数 在c++中,函数的形参列表中的形参是可以有默认值的.调用函数时,如果未传递参数的值(传入参数为空),则会使用默认值,如果指定了值,则会忽略默认值,使用传递的值. 语法:返回 ...

  6. redis zset 使用场景

    前文,我们讨论过redis 的数据结构及使用场景.可参考: 参考: 总结篇4:redis 核心数据存储结构及核心业务模型实现应用场景 https://www.cnblogs.com/yizhiamum ...

  7. yum命令提示error: rpmdb: BDB0113 Thread/process,解决方法

    最近在做RHCE的题目,yum命令装vdo时,使用yum install命令的时候,提示error: rpmdb: BDB0113 Thread/process,具体错误如下: [root@node2 ...

  8. 前后端沟通 naming conversion 转换需要知道的事

    c# 是 pascal case, js 是 camel case 所以在做 web api 和 odata 的时候经常需要转换. 早年 web api 是依赖 Newtonsoft json (JS ...

  9. Asp.net core 学习笔记之 authentication + authorization + identity + identity server 4 + angular 第六篇 (authorization 之 simple authorization, role based, claim based, policy based)

    authorization 授权是什么 ? 就是某个人必须符合某些条件才能做某些事儿 某个人指的是登入的 user 某些条件指的是 policy requirements 事儿指的是访问 contro ...

  10. 2023年6月中国数据库排行榜:OceanBase 连续七月踞榜首,华为阿里谋定快动占先机

    群雄逐鹿,酣战墨坛. 2023年6月的 墨天轮中国数据库流行度排行 火热出炉,本月共有273个数据库参与排名.本月排行榜前十变动不大,可以用一句话概括为:OTO 组合连续两月开局,传统厂商GBase南 ...