http://poj.org/problem?id=3186

Treats for the Cows
Time Limit: 1000MS   Memory Limit: 65536K
Total Submissions: 4041   Accepted: 2063

Description

FJ has purchased N (1 <= N <= 2000) yummy treats for the cows who get money for giving vast amounts of milk. FJ sells one treat per day and wants to maximize the money he receives over a given period time.

The treats are interesting for many reasons:

  • The treats are numbered 1..N and stored sequentially in single file in a long box that is open at both ends. On any day, FJ can retrieve one treat from either end of his stash of treats.
  • Like fine wines and delicious cheeses, the treats improve with age and command greater prices.
  • The treats are not uniform: some are better and have higher intrinsic value. Treat i has value v(i) (1 <= v(i) <= 1000).
  • Cows pay more for treats that have aged longer: a cow will pay v(i)*a for a treat of age a.

Given the values v(i) of each of the treats lined up in order of the index i in their box, what is the greatest value FJ can receive for them if he orders their sale optimally?

The first treat is sold on day 1 and has age a=1. Each subsequent day increases the age by 1.

Input

Line 1: A single integer, N

Lines 2..N+1: Line i+1 contains the value of treat v(i)

Output

Line 1: The maximum revenue FJ can achieve by selling the treats

Sample Input

5
1
3
1
5
2

Sample Output

43

Hint

Explanation of the sample:

Five treats. On the first day FJ can sell either treat #1 (value 1) or treat #5 (value 2).

FJ sells the treats (values 1, 3, 1, 5, 2) in the following order of indices: 1, 5, 2, 3, 4, making 1x1 + 2x2 + 3x3 + 4x1 + 5x5 = 43.

题意:
   给一个序列,只能从俩端出,出一个乘以天数。
分析:
本来想,一个序列,只能从俩端出,就只要比较俩端的大小就可以了,其实不然,看下面的测试数据:
4
101 1 102 100
按照我想的结果是713;
可是如果你首先找出102为第5天,接下来就是递推的过程了。
所以明显大很多811.
所以状态转移方程是 dp[i][j]=max(dp[i+1][j]+v[i]*(n-j+i),dp[i][j-1]+v[j]*(n-j+i));
n-j+i是天数,通过一个一个找出的规律。
 
#include<iostream>
#include<cstring>
#include<cstdio>
using namespace std;
int dp[][];
int main()
{
int n,i,g,k,v[],j;
while(~scanf("%d",&n))
{
memset(dp,,sizeof(dp));
for(i=;i<n;i++)
{
scanf("%d",&v[i]);
dp[i][i]=v[i]*n;//初始化,从最后出对往前推,假设每个都是最后出对。
}
for(k=;k<=n;k++)
{
for(i=;i<n-k;i++)
{
j=i+k;
dp[i][j]=max(dp[i+][j]+v[i]*(n-j+i),dp[i][j-]+v[j]*(n-j+i));
//这里是从最后出队的开始往前推,因为只有最后出队的,
//i+1才会等于j。
}
}
printf("%d\n",dp[][n-]);
}
return ;
}
/*#include<iostream>
#include<cstdio>
using namespace std;
int main()
{
int i,t,a[2005],j,ans,n;
while(~scanf("%d",&t))
{
ans=0;n=1;
for(i=0;i<t;i++)
scanf("%d",&a[i]);
i=0;j=t-1;n=1;
while(n<=t)
{ if(a[i]<a[j])
{
ans+=a[i]*n;
printf("ans=%d\n",ans);
i++;
}
else
{
ans+=a[j]*n;
printf("ans=%d\n",ans);
j--;
}
n++;
}
printf("%d\n",ans);
}
return 0;
}*/

poj3186 Treats for the Cows的更多相关文章

  1. kuangbin专题十二 POJ3186 Treats for the Cows (区间dp)

    Treats for the Cows Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 7949   Accepted: 42 ...

  2. POJ3186 Treats for the Cows —— DP

    题目链接:http://poj.org/problem?id=3186 Treats for the Cows Time Limit: 1000MS   Memory Limit: 65536K To ...

  3. poj3186 Treats for the Cows(区间)

    题目链接:http://poj.org/problem?id=3186 题意:第一个数是N,接下来N个数,每次只能从队列的首或者尾取出元素. ans=每次取出的值*出列的序号.求ans的最大值. 样例 ...

  4. POJ3186:Treats for the Cows(区间DP)

    Description FJ has purchased N (1 <= N <= 2000) yummy treats for the cows who get money for gi ...

  5. 【POJ - 3186】Treats for the Cows (区间dp)

    Treats for the Cows 先搬中文 Descriptions: 给你n个数字v(1),v(2),...,v(n-1),v(n),每次你可以取出最左端的数字或者取出最右端的数字,一共取n次 ...

  6. poj 3186 Treats for the Cows(区间dp)

    Description FJ has purchased N (1 <= N <= 2000) yummy treats for the cows who get money for gi ...

  7. BZOJ 1652: [Usaco2006 Feb]Treats for the Cows( dp )

    dp( L , R ) = max( dp( L + 1 , R ) + V_L * ( n - R + L ) , dp( L , R - 1 ) + V_R * ( n - R + L ) ) 边 ...

  8. BZOJ 1652: [Usaco2006 Feb]Treats for the Cows

    题目 1652: [Usaco2006 Feb]Treats for the Cows Time Limit: 5 Sec  Memory Limit: 64 MBSubmit: 234  Solve ...

  9. Treats for the Cows

     Treats for the Cows Time Limit:1000MS     Memory Limit:65536KB     64bit IO Format:%I64d & %I64 ...

随机推荐

  1. android 定时请求(两种实现方式)

    方式一: Handler + Runnable (借鉴网址:http://stackoverflow.com/questions/6207362/how-to-run-an-async-task-fo ...

  2. Android开发手记(32) 使用摄像头拍照

    在Android中,使用摄像头拍照一般有两种方法, 一种是调用系统自带的Camera,另一种是自己写一个摄像的界面. 我们要添加如下权限: <uses-permission android:na ...

  3. 工欲善其事必先利其器之Xcode高效插件和舒适配色

    功能强大的Xcode再配上高效的插件,必会让你的开发事半功倍.直接进入正题. Xcode插件安装方式: 1.github下载插件然后用xcode打开运行一遍,然后重启xcode. 2.安装插件管理Al ...

  4. Objective-C 实例方法可见度,方法

    一 实例方法可见度,方法 1.实例变量的可见度 可见度                                                                       特点 ...

  5. 搞一个app需要多久?

    //转载文章,看后有感 我有些尴尬地拿着水杯,正对面坐着来访的王总,他是在别处打拼的人,这几年据说收获颇丰,见移动互联网如火如荼,自然也想着要进来干一场,尽管王总从事的行当也算跟IT沾边,但毕竟太长时 ...

  6. App上线基本流程

    还可参考的:http://www.cocoachina.com/bbs/read.php?tid=330302 iOS项目上传前期准备材料: 1.已有开发者账号 2.已有发布证书 3.一张1024*1 ...

  7. iOS单例的两种实现

    单例模式算是开发中比较常见的一种模式了.在iOS中,单例有两种实现方式(至少我目前只发现两种).根据线程安全的实现来区分,一种是使用@synchronized,另一种是使用GCD的dispatch_o ...

  8. 不带头结点的单链表递归删除元素为X的结点

    #include <iostream> using namespace std; struct Node { Node *next; int elem; }; void creatList ...

  9. Linux技巧总结(个人经验版)

    1:善用桌面:1.图形界面的编辑,2.终端只要开机就在第2桌面,3.浏览器在第3桌面,4.娱乐在第4桌面. 2:cd命令中,输入中文目录很不方便,用 ln -s 桌面 desktop 创建软链接,不必 ...

  10. chdir 改变当前目录为起始目录

    <?php chdir(dirname(__FILE__));//把当前目录设置为当前目录?> 将 PHP 的当前目录改为 directory. 参数 directory 新的当前目录 返 ...