spark streaming 2: DStream


/**
* A Discretized Stream (DStream), the basic abstraction in Spark Streaming, is a continuous
* sequence of RDDs (of the same type) representing a continuous stream of data (see
* org.apache.spark.rdd.RDD in the Spark core documentation for more details on RDDs).
* DStreams can either be created from live data (such as, data from TCP sockets, Kafka, Flume,
* etc.) using a [[org.apache.spark.streaming.StreamingContext]] or it can be generated by
* transforming existing DStreams using operations such as `map`,
* `window` and `reduceByKeyAndWindow`. While a Spark Streaming program is running, each DStream
* periodically generates a RDD, either from live data or by transforming the RDD generated by a
* parent DStream.
*
* This class contains the basic operations available on all DStreams, such as `map`, `filter` and
* `window`. In addition, [[org.apache.spark.streaming.dstream.PairDStreamFunctions]] contains
* operations available only on DStreams of key-value pairs, such as `groupByKeyAndWindow` and
* `join`. These operations are automatically available on any DStream of pairs
* (e.g., DStream[(Int, Int)] through implicit conversions when
* `org.apache.spark.streaming.StreamingContext._` is imported.
*
* DStreams internally is characterized by a few basic properties:
* - A list of other DStreams that the DStream depends on
* - A time interval at which the DStream generates an RDD
* - A function that is used to generate an RDD after each time interval
*/
abstract class DStream[T: ClassTag] (
@transient private[streaming] var ssc: StreamingContext
) extends Serializable with Logging {
// =======================================================================
// Methods that should be implemented by subclasses of DStream
// =======================================================================
/** Time interval after which the DStream generates a RDD */
def slideDuration: Duration
/** List of parent DStreams on which this DStream depends on */
def dependencies: List[DStream[_]]
/** Method that generates a RDD for the given time */
def compute (validTime: Time): Option[RDD[T]]
// =======================================================================
// Methods and fields available on all DStreams
// =======================================================================
// RDDs generated, marked as private[streaming] so that testsuites can access it
@transient
private[streaming] var generatedRDDs = new HashMap[Time, RDD[T]] ()
/**
* Get the RDD corresponding to the given time; either retrieve it from cache
* or compute-and-cache it.
*/
private[streaming] def getOrCompute(time: Time): Option[RDD[T]] = {
spark streaming 2: DStream的更多相关文章
- 53、Spark Streaming:输入DStream之Kafka数据源实战
一.基于Receiver的方式 1.概述 基于Receiver的方式: Receiver是使用Kafka的高层次Consumer API来实现的.receiver从Kafka中获取的数据都是存储在Sp ...
- Spark入门实战系列--7.Spark Streaming(上)--实时流计算Spark Streaming原理介绍
[注]该系列文章以及使用到安装包/测试数据 可以在<倾情大奉送--Spark入门实战系列>获取 .Spark Streaming简介 1.1 概述 Spark Streaming 是Spa ...
- Spark Streaming
Spark Streaming Spark Streaming 是Spark为了用户实现流式计算的模型. 数据源包括Kafka,Flume,HDFS等. DStream 离散化流(discretize ...
- Spark学习之Spark Streaming
一.简介 许多应用需要即时处理收到的数据,例如用来实时追踪页面访问统计的应用.训练机器学习模型的应用,还有自动检测异常的应用.Spark Streaming 是 Spark 为这些应用而设计的模型.它 ...
- Spark Streaming 实现思路与模块概述
一.基于 Spark 做 Spark Streaming 的思路 Spark Streaming 与 Spark Core 的关系可以用下面的经典部件图来表述: 在本节,我们先探讨一下基于 Spark ...
- .Spark Streaming(上)--实时流计算Spark Streaming原理介
Spark入门实战系列--7.Spark Streaming(上)--实时流计算Spark Streaming原理介绍 http://www.cnblogs.com/shishanyuan/p/474 ...
- spark streaming的理解和应用
1.Spark Streaming简介 官方网站解释:http://spark.apache.org/docs/latest/streaming-programming-guide.html 该博客转 ...
- 实时流计算Spark Streaming原理介绍
1.Spark Streaming简介 1.1 概述 Spark Streaming 是Spark核心API的一个扩展,可以实现高吞吐量的.具备容错机制的实时流数据的处理.支持从多种数据源获取数据,包 ...
- Spark Streaming之一:整体介绍
提到Spark Streaming,我们不得不说一下BDAS(Berkeley Data Analytics Stack),这个伯克利大学提出的关于数据分析的软件栈.从它的视角来看,目前的大数据处理可 ...
随机推荐
- java实现spark常用算子之distinct
import org.apache.spark.SparkConf;import org.apache.spark.api.java.JavaRDD;import org.apache.spark.a ...
- 搭建私有CA并基于OpenSSL实现双向身份认证
0x00 前言 互联网上的Web应用由于用户数目广泛,都是采用单向身份认证的,只需要客户端验证服务端的身份.但如果是企业内部的应用对接,客户端数量有限,可能就会要求对客户端也做身份验证,这时就需要一个 ...
- xml_dom解析之二
dom解析(二) 通过代码创建一个xml文件 package xml4; import java.io.File; import javax.xml.parsers.DocumentBuilder; ...
- linux使用VNC服务轻松远程安装oracle
VNC服务在远程服务器上安装oracle,新手安装oracle时总会遇到这样或者那样的问题,下面我就详细解说一下安装过程,其实oracle安装很简单,并不要把他相像的特别复杂. 本环境用:centos ...
- maven 学习之路之二(1)
上次我简单讲了maven的安装和构建生命周期. 这一篇博客我将用实际项目来分享下maven整个构建生命周期的具体使用: 这次我将用maven做一个自己写程序的一个模版程序. 自己实现一个简单的页面登录 ...
- PAT Basic 1002 写出这个数 (20 分)
读入一个正整数 n,计算其各位数字之和,用汉语拼音写出和的每一位数字. 输入格式: 每个测试输入包含 1 个测试用例,即给出自然数 n 的值.这里保证 n 小于 1. 输出格式: 在一行内输出 n 的 ...
- python3 百度AI-v3之 人脸对比 & 人脸检测 & 在线活体检测 接口
#!/usr/bin/python3 # 百度人脸对比 & 人脸检测api-v3 import sys, tkinter.messagebox, ast import ssl, json,re ...
- 问题-CHM文件不显示
原问题:http://bbs.csdn.net/topics/370230310 问题描述: http://download.csdn.net/download/wybneu/3582721 我从这个 ...
- k8sService资源
一.service资源及其实现模型 通过规则定义出由多个pod对象组合而成的逻辑集合,以及访问这组pod的策略.service关联pod资源的规则要借助于标签选择器来完成 1.service资源概述 ...
- Ruby笔记
1.数组遍历方法总结 array = (1..10).to_a length = array.length length.times do t print "#{array[t]} &quo ...