Problem of State-Value Function

Similar as Policy Iteration in Model-Based Learning, Generalized Policy Iteration will be used in Monte Carlo Control. In Policy Iteration, we keep doing Policy Evaluation and Policy Improvement untill our policy converging to Optimal Policy.

Every time when we improve the policy, the action that gives the best return(reward+value function of the next state) will be picked.

The problem of this algorithm if we directly transfering to Monte Carlo is: it is based on the Transition Matrix.

Monte Carlo Control based on Q function

The idea of Policy Iteration can be used to Estimite Action-Value Function, and it is very useful for Model-Free problem. The process of choosing actions does not depend on State-Value function, because the return from a specific action is given by Monte Carlo estimation.

Q function can be updated by:

When we improve the policy, we just pick the action that produce the maximum Q value.

Exploration-exploitation Dilemma and ε-Greedy Exploration:

In Model-Based Policy Iteration algorithm, we update all State-Value function within a single policy evaluation process, so that we can choose the best actions from the whole action space  whiled improving policies. Nevertheless, Monte Carlo Learning only updates the Action-Value functions whose actions were taken on the previous episode. So there are probabily some actions having better returns than the actions we have tried. Sometimes we need to give them a trial. We call that problem the Exploration-Exploitation Delemma.

It is necessary to try some new opened restaurant, rather than going to the usual place every day.

ε-Greedy Exploration is the algorithm that gives the agent probability=ε to choose randomly actions and 1-ε to stay on the optimal action.

Monte Carlo Control的更多相关文章

  1. 增强学习(四) ----- 蒙特卡罗方法(Monte Carlo Methods)

    1. 蒙特卡罗方法的基本思想 蒙特卡罗方法又叫统计模拟方法,它使用随机数(或伪随机数)来解决计算的问题,是一类重要的数值计算方法.该方法的名字来源于世界著名的赌城蒙特卡罗,而蒙特卡罗方法正是以概率为基 ...

  2. Monte Carlo Policy Evaluation

    Model-Based and Model-Free In the previous several posts, we mainly talked about Model-Based Reinfor ...

  3. Monte Carlo方法简介(转载)

    Monte Carlo方法简介(转载)       今天向大家介绍一下我现在主要做的这个东东. Monte Carlo方法又称为随机抽样技巧或统计实验方法,属于计算数学的一个分支,它是在上世纪四十年代 ...

  4. PRML读书会第十一章 Sampling Methods(MCMC, Markov Chain Monte Carlo,细致平稳条件,Metropolis-Hastings,Gibbs Sampling,Slice Sampling,Hamiltonian MCMC)

    主讲人 网络上的尼采 (新浪微博: @Nietzsche_复杂网络机器学习) 网络上的尼采(813394698) 9:05:00  今天的主要内容:Markov Chain Monte Carlo,M ...

  5. Monte Carlo Approximations

    准备总结几篇关于 Markov Chain Monte Carlo 的笔记. 本系列笔记主要译自A Gentle Introduction to Markov Chain Monte Carlo (M ...

  6. (转)Markov Chain Monte Carlo

    Nice R Code Punning code better since 2013 RSS Blog Archives Guides Modules About Markov Chain Monte ...

  7. [其他] 蒙特卡洛(Monte Carlo)模拟手把手教基于EXCEL与Crystal Ball的蒙特卡洛成本模拟过程实例:

    http://www.cqt8.com/soft/html/723.html下载,官网下载 (转帖)1.定义: 蒙特卡洛(Monte Carlo)模拟是一种通过设定随机过程,反复生成时间序列,计算参数 ...

  8. Introduction to Monte Carlo Tree Search (蒙特卡罗搜索树简介)

    Introduction to Monte Carlo Tree Search (蒙特卡罗搜索树简介)  部分翻译自“Monte Carlo Tree Search and Its Applicati ...

  9. (转)Monte Carlo method 蒙特卡洛方法

    转载自:维基百科  蒙特卡洛方法 https://zh.wikipedia.org/wiki/%E8%92%99%E5%9C%B0%E5%8D%A1%E7%BE%85%E6%96%B9%E6%B3%9 ...

随机推荐

  1. Django之AJAX请求

    ---恢复内容开始--- 一.choices字段  1.实列  前端代码 <div class='container'> <div class="row"> ...

  2. java中数组的数组问题

    int[] arr = new int[10]; int[] arr2 = arr; arr[1] = 10; arr2[1] = 20; System.out.println(arr[1]); 上面 ...

  3. Zabbix--04 自定义模版、web监控

    目录 一.自定义模版 1.创建模版 2.导出模版 3.监控TCP11种状态 3.2.重启zabbix-agent 3.3.测试监控项 4.导入模版文件 5.主机关联模版文件 6.查看最新数据 7.查看 ...

  4. linux中未实现的系统调用

    afs_syscall, break, fattach, fdetach, ftime, getmsg, getpmsg, gtty, isastream, lock, madvise1, mpx, ...

  5. Linux下配置静态IP地址,设置DNS和主机名

    本人qq群也有许多的技术文档,希望可以为你提供一些帮助(非技术的勿加). QQ群:   281442983 (点击链接加入群:http://jq.qq.com/?_wv=1027&k=29Lo ...

  6. Deepin(Ubuntu)安装rpm软件包

    1.首先安装alien和fakeroot这两个软件,alien可以将rpm转换为deb包. 在终端中输入命令 sudo apt-get install alien fakeroot 2.使用alien ...

  7. ubuntu16.04 下安装jdk

    1.         在/usr/lib目录下新建jdk mkdir jdk 2.         执行文件移动 sudo mv ./resource/jdk-8u191-linux-x64.tar. ...

  8. 【leetcode】560. Subarray Sum Equals K

    题目如下:解题思路:本题的关键在于题目限定了是连续的数组,我们用一个dp数组保存第i位到数组末位的和.例如nums = [1,1,1],那么dp = [3,2,1], dp[i]表示nums[i]+n ...

  9. vue父组件更新,子组件也更新的方法

    1.父组件 使用 Math.ramdom() 2.子组件获取 然后监听这个ramdom变化,处理子组件的更新

  10. facebook第三方登陆实践

    未完,待续... 1.注册 到Facebook官网注册开发者账号,创建应用(开发者平台 https://developers.facebook.com),如果尚未注册账号的请注册账号并进行登录) 注册 ...