Problem of State-Value Function

Similar as Policy Iteration in Model-Based Learning, Generalized Policy Iteration will be used in Monte Carlo Control. In Policy Iteration, we keep doing Policy Evaluation and Policy Improvement untill our policy converging to Optimal Policy.

Every time when we improve the policy, the action that gives the best return(reward+value function of the next state) will be picked.

The problem of this algorithm if we directly transfering to Monte Carlo is: it is based on the Transition Matrix.

Monte Carlo Control based on Q function

The idea of Policy Iteration can be used to Estimite Action-Value Function, and it is very useful for Model-Free problem. The process of choosing actions does not depend on State-Value function, because the return from a specific action is given by Monte Carlo estimation.

Q function can be updated by:

When we improve the policy, we just pick the action that produce the maximum Q value.

Exploration-exploitation Dilemma and ε-Greedy Exploration:

In Model-Based Policy Iteration algorithm, we update all State-Value function within a single policy evaluation process, so that we can choose the best actions from the whole action space  whiled improving policies. Nevertheless, Monte Carlo Learning only updates the Action-Value functions whose actions were taken on the previous episode. So there are probabily some actions having better returns than the actions we have tried. Sometimes we need to give them a trial. We call that problem the Exploration-Exploitation Delemma.

It is necessary to try some new opened restaurant, rather than going to the usual place every day.

ε-Greedy Exploration is the algorithm that gives the agent probability=ε to choose randomly actions and 1-ε to stay on the optimal action.

Monte Carlo Control的更多相关文章

  1. 增强学习(四) ----- 蒙特卡罗方法(Monte Carlo Methods)

    1. 蒙特卡罗方法的基本思想 蒙特卡罗方法又叫统计模拟方法,它使用随机数(或伪随机数)来解决计算的问题,是一类重要的数值计算方法.该方法的名字来源于世界著名的赌城蒙特卡罗,而蒙特卡罗方法正是以概率为基 ...

  2. Monte Carlo Policy Evaluation

    Model-Based and Model-Free In the previous several posts, we mainly talked about Model-Based Reinfor ...

  3. Monte Carlo方法简介(转载)

    Monte Carlo方法简介(转载)       今天向大家介绍一下我现在主要做的这个东东. Monte Carlo方法又称为随机抽样技巧或统计实验方法,属于计算数学的一个分支,它是在上世纪四十年代 ...

  4. PRML读书会第十一章 Sampling Methods(MCMC, Markov Chain Monte Carlo,细致平稳条件,Metropolis-Hastings,Gibbs Sampling,Slice Sampling,Hamiltonian MCMC)

    主讲人 网络上的尼采 (新浪微博: @Nietzsche_复杂网络机器学习) 网络上的尼采(813394698) 9:05:00  今天的主要内容:Markov Chain Monte Carlo,M ...

  5. Monte Carlo Approximations

    准备总结几篇关于 Markov Chain Monte Carlo 的笔记. 本系列笔记主要译自A Gentle Introduction to Markov Chain Monte Carlo (M ...

  6. (转)Markov Chain Monte Carlo

    Nice R Code Punning code better since 2013 RSS Blog Archives Guides Modules About Markov Chain Monte ...

  7. [其他] 蒙特卡洛(Monte Carlo)模拟手把手教基于EXCEL与Crystal Ball的蒙特卡洛成本模拟过程实例:

    http://www.cqt8.com/soft/html/723.html下载,官网下载 (转帖)1.定义: 蒙特卡洛(Monte Carlo)模拟是一种通过设定随机过程,反复生成时间序列,计算参数 ...

  8. Introduction to Monte Carlo Tree Search (蒙特卡罗搜索树简介)

    Introduction to Monte Carlo Tree Search (蒙特卡罗搜索树简介)  部分翻译自“Monte Carlo Tree Search and Its Applicati ...

  9. (转)Monte Carlo method 蒙特卡洛方法

    转载自:维基百科  蒙特卡洛方法 https://zh.wikipedia.org/wiki/%E8%92%99%E5%9C%B0%E5%8D%A1%E7%BE%85%E6%96%B9%E6%B3%9 ...

随机推荐

  1. listalias - 列出用户和系统别名

    总揽 listalias [ -s | -u ] [ 正则表达式] 描述 Listalias 按用户及系统别名每个输出一行.每行具有下列格式: <别名> <地址> (<注 ...

  2. JavaEE高级-Spring学习笔记

    *Spring是什么? - Spring是一个开源框架 - Spring为简化企业级应用开发而生.使用Spring可以使简单的JavaBean实现以前只有EJB才能实现的功能 - Spring是一个I ...

  3. 计算机编号、硬盘序列号和Mac地址查询方法

    (1)计算机编号: SN也就是Serial Number的缩写,中文也就是产品序列号,而电脑的后面一般也有一个这样的SN序列号,那么怎么查看电脑的S/N序列号呢? 方法一: 将笔记本电脑翻过来,然后在 ...

  4. 4Linux 终端命令格式

    Linux 终端命令格式 转自 目标 了解终端命令格式 知道如何查阅终端命令帮助信息 01. 终端命令格式 command [-options] [parameter] 说明: command:命令名 ...

  5. 写了一个简单可用的IOC

    根据<架构探险从零开始写javaweb框架>内容写的一个简单的 IOC 学习记录    只说明了主要的类,从上到下执行的流程,需要分清主次,无法每个类都说明,只是把整个主线流程说清楚,避免 ...

  6. Ubuntu Text editor文本编辑器相关设置

    刚开始不熟悉Ubuntu,设置个文本编辑界面都难找到: 打开后在顶上的导航栏,下拉框内有preferences: 里面可以设置视图.字体颜色等

  7. 049:ORM常用Field详解(1)

    常用字段: 在 Django 中,定义了一些 Field 来与数据库表中的字段类型来进行映射.以下将介绍那些常用的字段类型. AutoField: 映射到数据库中是 int 类型,可以有自动增长的特性 ...

  8. SonarQube规则之bug类型

    1.".equals()" should not be used to test the values of "Atomic" classes.bug 主要不要 ...

  9. Bugku web web基础$_GET

    web基础$_GET 打开网站后发现 $what=$_GET['what']; echo $what; if($what=='flag') echo 'flag{****}'; 根据这段话的意思是将w ...

  10. EOF和~

    输入包含多组数据 while(~scanf("%d",&n))<=>  while(scanf("%d",&n)!=EOF)