BZOJ-2337 XOR和路径(HNOI2011)概率DP+概率的线性叠加
题意:给出n个点和m条边,每条边有权值wi,从1出发,每次等概率选一条出边走,直到终点n停止,得到的值是路径所有边的异或和。问异或和期望。
解法:这道题非常有意思!首先比较直观的想法就是dp[x]代表x走到终点n的期望异或和。那么容易写出状态转移方程dp[x]=sigma(dp[y]^w)/du[x] (y是x出点,w是出边权值)。虽然有自环和环,但是我们可以用高斯消元解决。但是再仔细一看,有xor还有除法的方程怎么用高斯消元解。。。
于是我们又想到期望是有线性叠加性的E(x+y)=E(x)+E(y)。那么此题又涉及到位运算,于是我们按位考虑!
例如考虑二进制第k位,dp[x]代表x到终点n的异或和结果第k位为1的期望,因为此时只涉及到0和1了,于是我们就可以愉快地加减了。
dp[x]=( sigma(dp[y])+sigma(1-dp[y]) ) / du[x] 。前面一项代表边w的第k位为0于是我们要在y上找1的概率,后面一项代表边w的第k位为1于是我们就要在y找0的概率。
写出转移方程之后基本功扎实就很容易化简然后上高斯消元解方程了。
最后我们把各个位的贡献线性叠加即可。
代码如下:
#include<bits/stdc++.h>
using namespace std;
const int N=+;
const int M=1e4+;
const long double eps=1e-;
int n,m,du[N]; int cnt=,head[N],nxt[M<<],to[M<<],len[M<<];
void add_edge(int x,int y,int z) {
nxt[++cnt]=head[x]; to[cnt]=y; len[cnt]=z; head[x]=cnt;
} long double c[N][N],b[N];
void Gauss(int n,int m) { //变量个数 方程个数
int r=;
for (int i=;i<=n;i++) {
int j=r+;
while (j<=m && fabs(c[j][i])<eps) j++; //从下面方程找一个第i位不为0的
if (j==m+) continue; //不存在第i位不为0的方程
r++; //矩阵的秩
for (int k=;k<=n;k++) swap(c[r][k],c[j][k]); //存在第i位不为0的方程,交换上去
swap(b[r],b[j]); for (int j=;j<=m;j++) { //以r方程回代m个方程
if (r==j) continue;
long double rate=c[j][i]/c[r][i];
for (int k=i;k<=n;k++) c[j][k]-=c[r][k]*rate;
b[j]-=b[r]*rate;
}
}
for (int i=;i<=n;i++) b[i]=b[i]/c[i][i]; //唯一解求解
} int main()
{
cin>>n>>m;
for (int i=;i<=m;i++) {
int x,y,z; scanf("%d%d%d",&x,&y,&z);
add_edge(x,y,z);
if (x!=y) add_edge(y,x,z);
if (x==y) du[x]++; else du[x]++,du[y]++;
}
long double ans=;
for (int k=;k<;k++) {
memset(c,,sizeof(c));
memset(b,,sizeof(b));
for (int i=;i<n;i++) { //建立方程
for (int j=head[i];j;j=nxt[j]) {
int t=len[j];
if ((t&(<<k))==) {
c[i][to[j]]-=(long double)1.0/du[i];
} else {
c[i][to[j]]+=(long double)1.0/du[i];
b[i]+=(long double)1.0/du[i];
}
}
c[i][i]+=1.0;
}
c[n][n]=1.0;
Gauss(n,n);
ans+=b[]*(<<k);
}
printf("%.3Lf\n",ans);
return ;
}
BZOJ-2337 XOR和路径(HNOI2011)概率DP+概率的线性叠加的更多相关文章
- BZOJ 2337 XOR和路径 | 高斯消元 期望 位运算
BZOJ 2337 XOR和路径 题解 这道题和游走那道题很像,但又不是完全相同. 因为异或,所以我们考虑拆位,分别考虑每一位: 设x[u]是从点u出发.到达点n时这一位异或和是1的概率. 对于所有这 ...
- BZOJ 2337 XOR和路径(概率DP)
求点1到点n经过的路径权值异或和的期望. 考虑按位计算,对于每一位来说,令dp[i]表示从i到n的异或和期望值. 那么dp[i]=sum(dp[j]+1-dp[k]).如果w(i,j)这一位为0,如果 ...
- BZOJ 2337 XOR和路径(高斯消元)
题目链接:http://61.187.179.132/JudgeOnline/problem.php?id=2337 题意:给定一个带权无向图.从1号点走到n号点.每次从当前点随机(等概率)选择一条相 ...
- BZOJ 2337: [HNOI2011]XOR和路径 [高斯消元 概率DP]
2337: [HNOI2011]XOR和路径 题意:一个边权无向连通图,每次等概率走向相连的点,求1到n的边权期望异或和 这道题和之前做过的高斯消元解方程组DP的题目不一样的是要求期望异或和,期望之间 ...
- 洛谷P3211 [HNOI2011]XOR和路径(期望dp+高斯消元)
传送门 高斯消元还是一如既往的难打……板子都背不来……Kelin大佬太强啦 不知道大佬们是怎么发现可以按位考虑贡献,求出每一位是$1$的概率 然后设$f[u]$表示$u->n$的路径上这一位为$ ...
- BZOJ 1415: [Noi2005]聪聪和可可 [DP 概率]
传送门 题意:小兔子乖乖~~~ 题意·真:无向图吗,聪抓可,每个时间聪先走可后走,聪一次可以走两步,朝着里可最近且点编号最小的方向:可一次只一步,等概率走向相邻的点或不走 求聪抓住可的期望时间 和游走 ...
- [NOIP2016 D1T3]换教室 【floyd+概率dp】
题目描述 对于刚上大学的牛牛来说,他面临的第一个问题是如何根据实际情况申请合适的课程. 在可以选择的课程中,有 2n2n 节课程安排在 nn 个时间段上.在第 ii(1 \leq i \leq n1≤ ...
- HDU 4576 Robot(概率dp)
题目 /*********************复制来的大致题意********************** 有N个数字,M个操作, 区间L, R. 然后问经过M个操作后落在[L, R]的概率. * ...
- 【概率DP/高斯消元】BZOJ 2337:[HNOI2011]XOR和路径
2337: [HNOI2011]XOR和路径 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 682 Solved: 384[Submit][Stat ...
随机推荐
- JDBC连接Hive数据库
一.依赖 pom <properties> <project.build.sourceEncoding>UTF-8</project.build.sourceEncodi ...
- 026:if标签使用详解
if标签使用详解: if 标签: if 标签相当于 Python 中的 if 语句,有 elif 和 else 相对应,但是所有的标签都需要用标签符号 {% %} 进行包裹. if 标签中可以使 ...
- orm 查询数据库随机返回一条数据的解决办法用models.User.objests.all().order_by('?').first()
- JS一些概念知识及参考链接
1.setTimeout.setInterval.promise.宏任务.微任务 先执行宏任务整体 script 同步代码,然后遇到 setTimeout 或者 setInterval 即放到宏任务队 ...
- CF700E Cool Slogans 后缀自动机 + right集合线段树合并 + 树形DP
题目描述 给出一个长度为n的字符串s[1],由小写字母组成.定义一个字符串序列s[1....k],满足性质:s[i]在s[i-1] (i>=2)中出现至少两次(位置可重叠),问最大的k是多少,使 ...
- codeforces 848B - Rooter's Song(构造+几何)
原题链接:http://codeforces.com/problemset/problem/848/B 题意:好多个人分别从x,y轴不同位置不同时间往垂直坐标轴方向移动,一旦相遇他们转向,问所有人的到 ...
- SLF4J: The requested version 1.6 by your slf4j binding is not compatible with [1.5.5, 1.5.6]
SLF4J:你的SLF4J绑定请求的1.6版不兼容[1.5.5,1.5.6] 在lib中,此时slf4j的版本是1.5.6,而slf4j-log4j的版本是1.6.由于版本的不兼容性,导致了这个错误. ...
- html5 figure和figcaption
figure标签和figcaption标签是html5新增的语义化标签. figure标签,html5语义化标签. 用于规定独立的流内容(图像.图表.照片.代码等等). figcaption标签,ht ...
- Tomcat服务器时间不正确
================================1=============================== 增加Tomcat参数设置"-Duser.timezone=G ...
- SSH 的原理和实践
最近自己在学习使用SSH,现将自己理解的SSH原理和实践SSH的操作写成一篇博客,以供日后查看. 一.SSH是什么?为什么会出现SSH? SSH英文全称是Secure Shell,即安全外壳.首先SS ...