bzoj4903 & loj2264 [Ctsc2017]吉夫特 Lucas 定理+状压DP
题目传送门
https://lydsy.com/JudgeOnline/problem.php?id=4903
题解
真 - 签到题。
对于一个组合数,直接进行 Luca 定理。
\]
可以发现,对于每一个二进制位,如果出现 \((0, 1)\) 这样的组合,那么整个组合数就是 \(0\),否则就是 \(1\)。
所以 \(\binom nm = 1\) 的充要条件就是 \(m \subseteq n\)。
那么把问题放到序列上,对于一位求出答案以后,扫描其所有子集更新。
因为 \(a_i\) 两两不同,所以复杂度可以保证为 \(O(3^{\log_2 a_i})\)。
#include<bits/stdc++.h>
#define fec(i, x, y) (int i = head[x], y = g[i].to; i; i = g[i].ne, y = g[i].to)
#define dbg(...) fprintf(stderr, __VA_ARGS__)
#define File(x) freopen(#x".in", "r", stdin), freopen(#x".out", "w", stdout)
#define fi first
#define se second
#define pb push_back
template<typename A, typename B> inline char smax(A &a, const B &b) {return a < b ? a = b, 1 : 0;}
template<typename A, typename B> inline char smin(A &a, const B &b) {return b < a ? a = b, 1 : 0;}
typedef long long ll; typedef unsigned long long ull; typedef std::pair<int, int> pii;
template<typename I> inline void read(I &x) {
int f = 0, c;
while (!isdigit(c = getchar())) c == '-' ? f = 1 : 0;
x = c & 15;
while (isdigit(c = getchar())) x = (x << 1) + (x << 3) + (c & 15);
f ? x = -x : 0;
}
const int N = 211985 + 7;
const int M = 233333 + 7;
const int P = 1e9 + 7;
int n, m;
int a[N], dp[M];
inline int smod(int x) { return x >= P ? x - P : x; }
inline void sadd(int &x, const int &y) { x += y; x >= P ? x -= P : x; }
inline int fpow(int x, int y) {
int ans = 1;
for (; y; y >>= 1, x = (ll)x * x % P) if (y & 1) ans = (ll)ans * x % P;
return ans;
}
inline void work() {
int ans = 0;
for (int i = 1; i <= m; ++i) dp[i] = 1;
for (int i = 1; i <= n; ++i) {
int s = a[i];
sadd(ans, dp[s] - 1);
int tmp = dp[s];
for (int sta = s; sta; sta = (sta - 1) & s) sadd(dp[sta], tmp);
}
printf("%d\n", ans);
}
inline void init() {
read(n);
for (int i = 1; i <= n; ++i) read(a[i]), smax(m, a[i]);
}
int main() {
#ifdef hzhkk
freopen("hkk.in", "r", stdin);
#endif
init();
work();
fclose(stdin), fclose(stdout);
return 0;
}
bzoj4903 & loj2264 [Ctsc2017]吉夫特 Lucas 定理+状压DP的更多相关文章
- [CTSC2017]吉夫特(Lucas定理,DP)
送70分,预处理组合数是否为偶数即可. 剩下的数据,根据Lucas定理的推论可得当且仅当n&m=n的时候,C(n,m)为奇数.这样就可以直接DP了,对于每个数,考虑它对后面的数的影响即可,直接 ...
- 洛谷P3773 [CTSC2017]吉夫特(Lucas定理,dp)
题意 满足$b_1 < b_2 < \dots < b_k$且$a_{b_1} \geqslant a_{b_2} \geqslant \dots \geqslant a_{b_k} ...
- 『Exclusive Access 2 dilworth定理 状压dp』
Exclusive Access 2 Description 给出 N 个点M 条边的无向图,定向得到有向无环图,使得最长路最短. N ≤ 15, M ≤ 100 Input Format 第一行一个 ...
- 【Codeforces】Gym 101173B Bipartite Blanket 霍尔定理+状压DP
题意 给一张$n\times m$二分图,带点权,问有多少完美匹配子集满足权值和大于等于$t$ 这里有一个结论:对于二分图$\mathbb{A}$和$\mathbb{B}$集合,如果子集$A \in ...
- BZOJ4903 UOJ300 CTSC2017 吉夫特 【Lucas定理】
BZOJ4903 UOJ300 CTSC2017 吉夫特 弱弱地放上题目链接 Lucas定理可以推一推,发现C(n,m)是奇数的条件是n" role="presentation&q ...
- 【bzoj4903/uoj300】[CTSC2017]吉夫特 数论+状压dp
题目描述 给出一个长度为 $n$ 的序列,求所有长度大于等于2的子序列个数,满足:对于子序列中任意两个相邻的数 $a$ 和 $b$ ($a$ 在 $b$ 前面),${a\choose b}\mod 2 ...
- HDU 1565&1569 方格取数系列(状压DP或者最大流)
方格取数(2) Time Limit: 10000/5000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others) Total S ...
- 【XSY2745】装饰地板 状压DP 特征多项式
题目大意 你有\(s_1\)种\(1\times 2\)的地砖,\(s_2\)种\(2\times 1\)的地砖. 记铺满\(m\times n\)的地板的方案数为\(f(m,n)\). 给你\(m, ...
- 7月15日考试 题解(链表+状压DP+思维题)
前言:蒟蒻太弱了,全打的暴力QAQ. --------------------- T1 小Z的求和 题目大意:求$\sum\limits_{i=1}^n \sum\limits_{j=i}^n kth ...
随机推荐
- 3,LinkedList
一,LinkedList简介 1,LinkedList 是一个继承于AbstractSequentialList的双向链表.它也可以被当作堆栈.队列或双端队列进行操作. 2,LinkedList 实现 ...
- 四-1、Cadence Allegro推荐操作方式和视图命令
第四章:实用命令详解 1.Cadence Allegro推荐操作方式: 激活命令 选择操作对象的属性 设置相关的命令参数 单击对应的对象 结束命令 2.视图命令:
- 学习日记3、投机取巧使两个表的数据同时在一个treeGrid中显示
不多说了直接上代码, $('#List').treegrid({ url: '@Url.Action("GetList")', width: $(window).width() - ...
- datagrid选择一行
onLoadSuccess:function(value, rec){ $("#sinopec_search_btn").linkbutton('enable'); var dat ...
- ReactNative的学习笔记
一.安装nodejs 查看是否安装:npm -v 二.安装react-native命令工具 npm install -g react-native-cli 三.查看 react-native --he ...
- vue动态路由传值以及get传值及编程式导航
1.动态路由传值 1.配置路由处 { path: '/content/:id', component: Content }, // 动态路由 2.对应页面传值 <router-link :to= ...
- Android 一键分享功能简单实现
import java.io.File;import java.util.ArrayList;import java.util.List; import android.content.Context ...
- jmeter常用组件简介
本文主要介绍jmeter使用过程中最常用的一些组件及其作用.性能测试时线程组中可以添加如下的组件,如图所示: test plan:测试计划,是其它组件的容器 thread:线程组,用来设置多少线程,怎 ...
- selenium 访问网页抛出ElementNotVisibleException异常
问题描述: 在使用selenium时遇到如下异常导致程序终止: selenium.common.exceptions.ElementNotVisibleException: Message: {&qu ...
- 为什么每次打出的包都是Release版本呢?
参考了:xcodebuild命令 https://www.cnblogs.com/liuluoxing/p/8622108.html 重新打个包,验证一下想法